
Exploring
Blazor

Creating Hosted, Server-side, and
Client-side Applications with C#
—
Taurius Litvinavicius

Exploring Blazor
Creating Hosted, Server-side,
and Client-side Applications

with C#

Taurius Litvinavicius

Exploring Blazor: Creating Hosted, Server-side, and Client-side

Applications with C#

ISBN-13 (pbk): 978-1-4842-5445-5		 ISBN-13 (electronic): 978-1-4842-5446-2
https://doi.org/10.1007/978-1-4842-5446-2

Copyright © 2019 by Taurius Litvinavicius

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava
Development Editor: Siddhi Chavan
Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-5445-5.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Taurius Litvinavicius
Jonava, Lithuania

www.EBooksWorld.ir

https://doi.org/10.1007/978-1-4842-5446-2

iii

About the Author���vii

About the Technical Reviewer��ix

Introduction��xi

Table of Contents

Chapter 1: Introduction���1

What is Blazor?��1

What is WebAssembly?��2

Blazor Types���3

Blazor Server-side��4

Blazor Client-side���4

Blazor Hosted���5

Summary���6

Chapter 2: Razor Syntax and Basics of Blazor��������������������������������������7

Differences between Razor and Blazor��7

Syntax��8

Comments��8

Sections��9

Blazor Binds���11

Bind to Element��12

code��13

Page Events��16

Summary���17

iv

Chapter 3: Blazor server-side��19

Default template overview���19

Startup��19

Injections��23

Navigation��26

Pages��27

Components���29

Parameters���31

Finished example project���33

Summary���42

Chapter 4: Blazor Client-side���43

Default Template Overview��43

Program and Startup��43

Clean Up the Template��47

Navigation��49

Components���53

Using Key to Preserve Components���56

Example��58

Summary���65

Chapter 5: Blazor hosted���67

Default template overview���67

General structure��67

Clean up the template��72

Navigation��75

API calls���77

JSONfull way��81

Table of ContentsTable of Contents

v

HTTP client manipulations��84

Example��87

Summary���111

Chapter 6: General Blazor��113

Interacting with JavaScript��113

Execute JavaScript Function��114

UI Events���116

UI Arguments��117

Local Storage���118

Where to Store?��119

Store Text��120

Store Other Types���122

Pick and Save Files��125

Pick File��129

Save File���130

Summary���131

Chapter 7: Practice Tasks for Server-side���133

Task 1���133

Description���133

Resources���134

Solution��135

Task 2���143

Description���143

Solution��144

Summary���151

Table of ContentsTable of Contents

vi

Chapter 8: Practice Tasks for Client-side��153

Task 1���153

Description���153

Solution��156

Task 2���169

Description���170

Solution��170

Summary���178

Chapter 9: Practice Task for Blazor Hosted���������������������������������������179

Task 1���179

Description���180

Resources���180

Solution��184

Summary���193

Index��195

Table of ContentsTable of Contents

vii

About the Author

Taurius Litvinavicius is a businessman and

technology expert based in Lithuania who

has worked with various organizations in

building and implementing various projects

in software development, sales, and other

fields of business. He works on a platform

called MashDrop, which is a modern way

to monetize the influence of an influencer.

As with most of his projects, this one uses

cutting-edge technologies such as Blazor. He is

responsible for technological improvements,

development of new features, and general management. 

Taurius is also the director at the Conficiens solutio consulting agency,

where he supervises development and maintenance of various projects

and activities.

ix

About the Technical Reviewer

Carsten Thomsen is a back-end developer

primarily, but working with smaller front-

end bits as well. He has authored and

reviewed a number of books, and created

numerous Microsoft Learning courses, all to

do with software development. He works as

a freelancer/contractor in various countries

in Europe, using Azure, Visual Studio,

Azure DevOps, and GitHub as some of the

tools he works with. Being an exceptional

troubleshooter, asking the right questions,

including the less logical ones, in a most logical to least logical fashion,

he also enjoys working with architecture, research, analysis, development,

testing, and bug fixing. Carsten is a very good communicator with great

mentoring and team lead skills, and great skills researching and presenting

new material.  

xi

Introduction

For many years the web development community has been waiting for

something new, something to escape that dreaded JavaScript monopoly.

Finally, the prayers have been answered – first with the release of

WebAssembly and now with the release of Blazor. This book will explore

Blazor in its full depth, and alongside that, you will understand what role

WebAssembly plays in this whole arrangement. In fact, this is where we

will begin; we will learn what Blazor is, where it runs, and how to start

using it. Being a businessman with software development skills, the author

has a unique view toward technologies and may base his predictions of

the future for the technology not only on it being convenient to code but

also on having tremendous business value. Although the technology is still

young, the author has already managed and taken part in the development

of a large-scale platform – mashdrop.com – and from that experience can

tell you firsthand about the ease of use and efficiency of using Blazor for

the project.

The book will focus on practicality and practice; therefore, you can

expect lots of sample code and some exercises to complete. In fact, we

will have five exercises, covering all types of Blazor, and with that, we will

explore some use cases. The author believes in experiential learning; that

is why, from the early stages of the book, we will be exploring Blazor by

looking at code samples or folder structures of projects. Since Blazor is

not a stand-alone technology, such as a programming language, the best

way to learn it is to interact with it, see what it looks like in the code, and

uncover some similarities with technologies using the same programming

language – in this case C#. You will see, you will do, and most importantly

you will learn.

1© Taurius Litvinavicius 2019
T. Litvinavicius, Exploring Blazor, https://doi.org/10.1007/978-1-4842-5446-2_1

CHAPTER 1

Introduction
Before you start, you need to know and prepare a few things. This is not an

introductory book to C# or .NET Core development, so you should have

good knowledge of C# and be able to build applications with it. It does

not matter if you develop back-end applications, Windows applications,

or mobile applications; as long as you use C#, you will find something

familiar in Blazor. You need to install some software on your system,

starting with Visual Studio 2019, followed by the latest version of .NET

Core 3.0.

�What is Blazor?
Blazor is a web UI framework allowing you to use C# and .NET Core on

the front end. It allows you to develop your front-end logic in a couple of

different ways using the C# programming language, and that is something

that we will explore later in this chapter.

Technical aspects aside, think of it this way; in any standard web

development project, you would need to have two people, one for the

JavaScript and the other for the back end. Sometimes you also need a

designer to work with HTML elements and CSS and do other design-

related tasks. The Blazor technology will not remove any dependency for a

designer, but it will surely remove the dependency on JavaScript. However,

JavaScript can still be used with the Blazor technology.

2

Blazor uses the Razor syntax (C# mixed with HTML), which will be

covered in the next chapter, so any familiarity with the Razor syntax will

give you an edge when developing. There are some differences though,

as you will see shortly. Most importantly, Razor only happens once and

Blazor will happen over and over again, meaning that your C# part in

Razor (.cshtml file) will only execute when the page is loaded, but in Blazor

(.razor file) the code will execute on the loaded page on various events,

such as onclick, onchange, and others.

It uses WebSocket to communicate with the server as well as work on

the server-side, or it uses the WebAssembly technology which allows for

C# to be built on the client side. This is where the different types of Blazor

technology come into play.

�What is WebAssembly?
WebAssembly is a technology that allows you to compile languages like

C++ or C# in the browser, thus allowing Blazor to exist. It first appeared as

a minimum viable product in early 2017, and while the technology is still

in its early years, it is being co-developed by companies like Microsoft,

Google, Apple, and others. The technology already has the support of

all major browsers (https://webassembly.org/roadmap/), and with

its growth, we can expect the support to be there for a very long time.

In general, Blazor simply sends a source code file to the browser and

WebAssembly compiles it into a binary file. The technology is available in

all major browsers – Edge, Chrome, Firefox, Opera, and Maxthon (MX) –

and the equivalent mobile versions.

WebAssembly gives you a safe, sandboxed environment, so it appears

similarly as running JavaScript. Nothing is accessible from outside the

specific browser tab the user is using.

Chapter 1 Introduction

https://webassembly.org/roadmap/

3

�Blazor Types
Server-side (see Figure 1-1) Blazor will run all the logic, mainly using

WebSocket to accomplish the task. While it does give you an ability to use

C# for writing front-end code, this may not be the most efficient option.

You eliminate the need for API calls with this option, as you will simply

inject your libraries directly into the front-end part.

Figure 1-1.  Blazor templates

All three types of Blazor have different templates in Visual Studio, and

you should always use them for your Blazor projects no matter which type

you choose. As shown in Figure 1-1, you will need to choose Blazor App

project type and then choose the type of Blazor after you have picked your

project location.

Chapter 1 Introduction

4

�Blazor Server-side
While the server-side may come across as a convenience, you should still

go with the client Blazor, that is, Blazor running in a browser. Server-side

will use server resources, while the client will save you resources or at the

very least will not waste them.

Figure 1-2.  Server-side Blazor template selection

Once you get to picking the Blazor type in Visual Studio, you need to

select “Blazor Server App” as shown in Figure 1-2.

�Blazor Client-side
Client-side (see Figure 1-2) Blazor runs entirely on client-side in the

browser. Your pages reside on the server, but it is all for client-side

to handle. This is good for a presentation web site or web sites that

Chapter 1 Introduction

5

provide calculators and other such simple services. If you need database

interactions or if you already have APIs and class libraries, this should not

be your choice.

Figure 1-3.  Client-side Blazor template selection

For the client-side project, you need to pick the template “Blazor

WebAssembly App”. With that, the checkbox on the right side “ASP.NET

Core hosted” needs to be unchecked.

�Blazor Hosted
Blazor hosted (see Figure 1-3), this is probably the best type to go with as

your logic will run on the browser saving those precious server resources.

Basically, there are two parts, the client Blazor project and an API project.

They are connected in a unique way, so you will not need to treat them as

separate projects.

Chapter 1 Introduction

6

If you wish to go with our final type of Blazor, you will need to select

the template “Blazor WebAssembly App” (see Figure 1-4) just like you did

for the client-side, but in this case you do need to check the checkbox on

the right side “ASP.NET Core hosted”.

�Summary
There is no best type of Blazor; as you have seen throughout this chapter,

every option has its own use case. Everything depends on what your

project needs right now and more importantly what it will need in the

future. If you are not, simply go with the client-side, as it will be the most

diverse option. In the next chapter, we will dive deeper into Blazor and

explore the syntax and some other things. You will see that while the

structure may be different, for the most part, coding happens in the same

way for all types of Blazor.

Figure 1-4.  Blazor hosted template selection

Chapter 1 Introduction

7© Taurius Litvinavicius 2019
T. Litvinavicius, Exploring Blazor, https://doi.org/10.1007/978-1-4842-5446-2_2

CHAPTER 2

Razor Syntax and
Basics of Blazor
This chapter will get you started with Blazor, as mentioned in the last

chapter – all three types of Blazor have a lot in common and this is what

this chapter is all about. Before we can go any further, we will need to look

at the syntax and see how it works. Then we will get to the essentials of

Blazor, such as bindings and method execution; all that will be used later

in the book.

In this chapter, you will learn

•	 Syntax

•	 Element and variable bindings

•	 Method executions

•	 Use of general page events

�Differences between Razor and Blazor
Simplistically speaking, the difference is that Razor will happen once on

“page launch,” while the Blazor will work all the time. The loops and logic

statements will get re-evaluated in Blazor, while with Razor it will only

happen once.

8

�Syntax
As mentioned previously, if you know the Razor syntax, you will know

Blazor syntax. However, if you do not know the Razor syntax, this is the

part for you. Blazor syntax goes into a markup file named .razor, which

contains HTML, as well as C# code.

�Comments
Even though we use HTML syntax in a Blazor file, we do not use html

comments. Instead we use Razor syntax for that and get beautiful and

efficient commenting system, with no comments left on a generated page.

Figure 2-1.  Razor/Blazor comment syntax

As shown in Figure 2-1, you simply start a comment section with @*

and then end with *@. You can also use the standard HTML comments,

but using the Razor/Blazor syntax will appear clearer on the code. The

Razor/Blazor comment syntax characters get highlighted and the actual

comment is displayed in a green font. The comments are compiled into the

code; thus, they will not appear in the developer tools in the browser.

Chapter 2 Razor Syntax and Basics of Blazor

9

�Sections
Razor syntax is basically C# and html code in one file, and while they do

interact, you still need some things to be clearer than the others and you

need some higher contrast between the two languages. That is where all

the different sections come in; as you will see, they are C# dominant and

they are used to highlight the C# parts of the code.

Figure 2-2.  Basic Blazor Sections

In Figure 2-2, a variable is being declared and then it is displayed

directly in a paragraph using C# code. So, for a single variable and

construction of classes, you can simply use the @ sign and write everything

on a single line, but if you want to do more than one line for a variable

declaration, you need to create a section using @{ ... }.

At this point, this may look very simple, so let's dive into a few more

examples:

Chapter 2 Razor Syntax and Basics of Blazor

10

In Figure 2-3, the testint variable is declared and set to the value 0,

followed by an if statement checking if the value of testint is not 0. Since

the statement criteria is not satisfied, whatever is inside the if statement

is not displayed. If the testint variable is set to any other value than 0, say

1, the HTML paragraph tag and value would be displayed. The C# code

in the @{ } section is highlighted, and it requires no @ sign for each line.

The if statement part starts with @ sign and creates a section similar to the

previous example. This means the HTML code in the if statement section

is not highlighted in any way.

Figure 2-3.  if statement syntax

Figure 2-4.  <Caption>syntax coloring

Chapter 2 Razor Syntax and Basics of Blazor

11

In Figure 2-4, a for loop has been created, looping five times. Each loop

creates a new paragraph tag containing the value for the current iteration, i.

The for loop part is highlighted in a slight shade of gray, while the @ signs

are highlighted in a yellow color. The HTML part inside the loop is not

highlighted but the C# code is; that is how you can tell the difference between

HTML markup and C# code.

Listing 2-1.  Code section

<p>test</p>

@code {

 int a;

 double b = 2.5;

 void testmethod() {

 }

}

Finally, there’s the code section (see Listing 2-1), where all the

methods should be declared. The binding variables should also be added

to the code section, which we will explain in a later chapter (Blazor binds).

�Blazor Binds
Blazor allows you to bind an HTML input value to a variable and vice

versa. Therefore, for the most part, we can call all bindings two-way. If you

bind a text box (input type text) to a string variable, the displayed value

will be the value of that string. Different elements will work differently and

there are many use cases for this.

Chapter 2 Razor Syntax and Basics of Blazor

12

�Bind to Element
Binding to an element is very simple, but not all elements can be bound,

although most can.

Elements where values can be bound to variable

•	 Input (except for file type)

•	 Textarea

•	 Select

The listed elements are most common elements that can be bound,

but others may work too.

Listing 2-2.  variables

@code {

 string teststring = "test value"

 bool testbool = true;

}

In Listing 2-2, two simple variables have been declared and initial

values assigned, and Listing 2-3 shows how to bind them to different

elements.

Listing 2-3.  bindings

<input type="checkbox" @bind="@testbool">

<input @bind="@teststring">

<textarea @bind="@teststring"></textarea>

In Listing 2-3, a Boolean value is bound to a checkbox, checked/

unchecked, and the same is true for a radio button. The string value can be

bound to any text value – input, textarea, and others. When the input value

changes, the variable value changes, and when the variable value changes,

the value displayed in the input tag will change too.

Chapter 2 Razor Syntax and Basics of Blazor

13

�code
The code section is where the C# methods for the front end are added. The

code sections are meant to contain your code for client-side, variables, and

methods. It is much like <script> tag in a standard HTML page, but there's

more to it as shown in Listing 2-4.

Listing 2-4.  Variable display

<p>@testvar</p>

@code {

 string testvar = "test variable";

}

In Listing 2-4, a variable is declared and then it is added to a paragraph

tag. This is quite special, as shown in Listing 2-5.

Listing 2-5.  On click event

<p>@testvar</p>

<p><button @onclick="@testmethod">change</button></p>

@code {

 string testvar = "test variable";

 void testmethod() {

 testvar = "tst";

 }

}

In Listing 2-5, the same variable as in Listing 2-4 is declared and then

displayed in the paragraph tag. There's also a C# method which, in client-

side Blazor, will run on the front end. The method is called by declaring it

in the onclick event attribute for the button tag, but parenthesis should not

be used. The method simply changes the value for the variable, and in turn

Chapter 2 Razor Syntax and Basics of Blazor

14

what is displayed in the paragraph tag is also changed. So, that is a one-

way binding, and in Listing 2-6, a two-way binding is shown.

Listing 2-6.  Bind, on click and display

<p>@testvar</p>

<p><input @bind="@testvar"></p>

<p><button @onclick="@(() => testmethod())">change</button></p>

@code {

 string testvar = "nothing to display";

 void testmethod()

 {

 testvar = "test value";

 }

}

In Listing 2-6, an input tag is bound to the testvar variable, so

whenever the input tag value changes, the variable will also change and

therefore the display in the paragraph tag also changes. Do note that the

input tag must lose focus for it to take effect.

So that is how to call a method accepting no parameters. While it is not

recommended, Listing 2-7 shows how to pass and accept parameters. Your

method could also be a Task method, and you would be able to await it in

that lambda expression.

Listing 2-7.  Method with parameters

<p>@testvar</p>

<p><input @bind="@testvar"></p>

<p><button @onclick="@(() => testmethod("test var"))">change

</button></p>

@code {

 string testvar = "nothing to display";

Chapter 2 Razor Syntax and Basics of Blazor

15

 void testmethod(string testparam)

 {

 testvar = testparam;

 }

}

In Listing 2-7, the method accepts the testparam parameter. So, use

parenthesis on the method call, and pass the value to call the method,

rather than declaring it for the event almost like a variable. Use a lambda

expression, and then use the method normally. This can be very useful if

different values are needed on list output. To use a Task method, a lambda

expression should be used as well.

Listing 2-8.  Asynchronous task

<p>@testvar</p>

<p><input bind="@testvar" /></p>

<p><button onclick="@(async () => await testmethod())">change

</button></p>

@code {

 string testvar = "nothing to display";

 async Task testmethod()

 {

 testvar = "test value";

 }

}

In Listing 2-8, it is quite easy to do, but it is recommended to use the

await keyword and use a Task with an async method.

Chapter 2 Razor Syntax and Basics of Blazor

16

�Page Events
Whenever the user loads a page, some events are triggered, which is

common in all event-based applications, and while some technologies

provide many events, Blazor, however, only provides a handful of them as

shown in Listing 2-9.

Listing 2-9.  Event overrides

@page "/"

<h1>Hello, world!</h1>

Welcome to your new app.

@code {

 protected override Task OnInitAsync()

 {

 return base.OnInitAsync();

 }

 protected override void OnInit()

 {

 base.OnInit();

 }

 protected override Task OnAfterRenderAsync()

 {

 return base.OnAfterRenderAsync();

 }

 protected override void OnAfterRender()

 {

 base.OnAfterRender();

 }

Chapter 2 Razor Syntax and Basics of Blazor

17

 protected override Task OnParametersSetAsync()

 {

 return base.OnParametersSetAsync();

 }

 protected override void OnParametersSet()

 {

 base.OnParametersSet();

 }

 protected override bool ShouldRender()

 {

 return base.ShouldRender();

 }

}

The first method, OnInitAsync, is useful for assigning initial variable

values and retrieving other data before the page is loaded. The OnInit

method is a non-task-based method equivalent to the OnInitAsync. The

two event methods OnAfterRender and OnAfterRenderAsync can be used

when needing to do some additional work after the UI elements have

rendered. The final two methods are triggered when a parameter changes,

which may be useful if you have search parameters or you have layout

changes, such as dark and light themes.

�Summary
You now know some basics of Blazor, as well as the most important parts

of Blazor – bindings and method executions. In the next chapters, we will

dive deeper into Blazor and explore differences between the different

types. With that, we will not forget the basics, and alongside everything

else, you will see something from this chapter occurring in almost every

example of code in this book.

Chapter 2 Razor Syntax and Basics of Blazor

19© Taurius Litvinavicius 2019
T. Litvinavicius, Exploring Blazor, https://doi.org/10.1007/978-1-4842-5446-2_3

CHAPTER 3

Blazor server-side
This chapter is an introduction to the Blazor server-side technology

which allows you to run your front-end logic in the back end using the C#

programming language.

In this chapter, you will learn

•	 How Blazor server-side runs

•	 Handling injections

•	 Navigation and related matters

�Default template overview
Blazor is a complex technology, containing lots of elements, but Microsoft

has taken care of the complexity by supplying three different templates –

server-side, client-side, and hosted. In this section, you will need to use

server-side, and that is what we will explore here.

�Startup
Any Blazor application is a standard web application, or in fact, it is a

console application. .NET Core web applications have the usual main

Program.cs class, containing the main method, and the Startup.cs class,

which contains all the startup logic. In Listing 3-1, the default created

Program.cs is shown.

20

Listing 3-1.  Program.cs contents

using Microsoft.AspNetCore.Hosting;

using Microsoft.Extensions.Hosting;

namespace WebApplication1

{

 public class Program

 {

 public static void Main(string[] args)

 {

 CreateHostBuilder(args).Build().Run();

 }

 �public static IHostBuilder CreateHostBuilder(string[]

args) =>

 Host.CreateDefaultBuilder(args)

 .ConfigureWebHostDefaults(webBuilder =>

 {

 webBuilder.UseStartup<Startup>();

});

 }

}

Keep the default Program.cs as shown in Listing 3-1. Once the program

is initiated, the method creates a host and sets the startup type to Startup.cs,

and that is where the Blazor part begins.

Listing 3-2.  Startup.cs

using Microsoft.AspNetCore.Builder;

using Microsoft.AspNetCore.Hosting;

using Microsoft.Extensions.Configuration;

using Microsoft.Extensions.DependencyInjection;

Chapter 3 Blazor server-side

21

using Microsoft.Extensions.Hosting;

using WebApplication1.Data;

namespace WebApplication1

{

 public class Startup

 {

 public Startup(IConfiguration configuration)

 {

 Configuration = configuration;

 }

 public IConfiguration Configuration { get; }

 �public void ConfigureServices(IServiceCollection

services)

 {

 services.AddRazorPages();

 services.AddServerSideBlazor();

 services.AddSingleton<WeatherForecastService>();

 services.AddSingleton<Data.TestService>();

 }

 �public void Configure(IApplicationBuilder app,

IWebHostEnvironment env)

 {

 if (env.IsDevelopment())

 {

 app.UseDeveloperExceptionPage();

 }

Chapter 3 Blazor server-side

22

 else

 {

 app.UseExceptionHandler("/Home/Error");

 app.UseHsts();

 }

 app.UseHttpsRedirection();

 app.UseStaticFiles();

 app.UseRouting();

 app.UseEndpoints(endpoints =>

 {

 endpoints.MapBlazorHub();

 endpoints.MapFallbackToPage("/_Host");

 });

 }

 }

}

Most of the content of Startup.cs shown in Listing 3-2 is quite generic,

the same content found in any .NET Core web application template.

The first important part is the ConfigureServices method, where every

line of code is used to configure Blazor. Use the AddRazorPages to allow

Razor pages, which is required by the initial .cshtml file, covered in the

“Navigation” section. The AddServerSideBlazor method handles all

things server-side Blazor. The singletons are used to register services,

which is covered later. In the Configure method, the important bit is the

UseEndpoints lambda, where the endpoint configuration for handling

Blazor is located. The fallback page is the _Host.cshtml file.

Chapter 3 Blazor server-side

23

�Injections
Injection samples can be seen in the default template, but we will add a

custom one to see exactly what needs to be done. Figure 3-1 shows the

Data folder with two services and an entity object with public properties.

The TestService.cs code file is the custom service.

Listing 3-3.  TestService.cs

using System.Linq;

using System.Threading.Tasks;

namespace WebApplication1.Data

{

 public class TestService

 {

 �public Task<double> TestCalculationAsync(double a,

double b)

 {

 return Task.FromResult(a * b);

 }

 }

}

Figure 3-1.  Data folder with custom service

Chapter 3 Blazor server-side

24

In Listing 3-3, the TestService.cs file is shown, and it is a simple

class, containing a static method. One important thing to do so that the

service can be used in the context of server-side Blazor is to register it as

service. If a service is not registered, an error is displayed in the browser

window – InvalidOperationException: Cannot provide a value for property

‘tstservice’ on type ‘WebApplication1.Pages.Index’. There is no registered

service of type ‘WebApplication1.Data.TestService’.

Listing 3-4.  Page with injected data service

@page "/"

@inject Data.TestService tstservice

<p><input @bind="a" /></p>

<p><input @bind="b" /></p>

<p><button onclick="@(new Action(() =>

tstservice.TestCalculationAsync(a, b)))">test 1</button></p>

<p><button onclick="@(new Action(() =>

testcalculation()))">test 2</button></p>

<p>@todisplay</p>

 @code {

 double a;

 double b;

 double todisplay;

 async Task testcalculation()

 {

 todisplay = await tstservice.TestCalculationAsync(a, b);

 }

 }

Chapter 3 Blazor server-side

25

The Index.razor file, shown in Listing 3-4, has been customized with

two implementations of the service, one synchronous and the other

asynchronous, both invoked by clicking or tapping a button. To use the

service, it must be injected, and the injection works the same way as

simple construction. It’s possible to access methods and other members

of the class. The injection starts with keyword @inject, followed by the

namespace and class name, using the usual dot notation, and finally the

object name is assigned. All of that is done in a single line of code.

Listing 3-5.  Service registry

public void ConfigureServices(IServiceCollection services)

{

 services.AddRazorPages();

 services.AddServerSideBlazor();

 services.AddSingleton<WeatherForecastService>();

 services.AddSingleton<Data.TestService>();

}

In Startup.cs, shown in Listing 3-5, the ConfigureServices method is

used to register the custom services by using the AddSingleton method of

the IServiceCollection.

The Index.razor page (Listing 3-4) contains two buttons, and they

are bound to two double variables, a and b. There’s also one paragraph

displaying the resulting double value. Methods from injections can be

called directly in the button’s onclick event; however, if you need to assign

the return value, it is better to create a method in the Listing section and

execute your injection method there. The button with content “Test 1”

executes the method directly, while the button with “Test 2” executes the

local method in the code, which in turn assigns the return value to the

todisplay variable, and it gets displayed.

Chapter 3 Blazor server-side

26

�Navigation
The navigation is simple and straightforward; as you will soon see, it is a

matter of only one for the most part. Blazor allows you to open a page in

the layout, but it also allows you to use a page as a component, or in other

words as an HTML element.

As shown in Figure 3-2, there are two folders, Pages and Shared, for

storing HTML and Razor pages. The Shared folder should be used for

layout elements and the Pages folder for pages. The MainLayout.razor file

contains the main layout, containing one little piece where all the other

pages get displayed, and NavMenu.razor is a component that goes into

MainLayout.razor. Getting to pages, we only need to look at _Host.cshtml,

_Imports.razor, and then Index.razor. The Counter.razor and FetchData.

razor are sample pages embedded in the template, and TestPage.Razor

was created for the purpose of this book. We will start by looking at the

MainLayout.razor and see how the pages get displayed.

Figure 3-2.  HTML and Razor pages

Chapter 3 Blazor server-side

27

Listing 3-6.  Layout component

@inherits LayoutComponentBase

<div class="sidebar">

 <NavMenu />

</div>

<div class="main">

 <div class="top-row px-4">

 �<a href="https://docs.microsoft.com/en-us/aspnet/"

target="_blank">About

 </div>

 <div class="content px-4">

 @Body

 </div>

</div>

In the content of MainLayout.razor, shown in Listing 3-6, provided

in the template, you only need to notice two things: inheritance

of LayoutComponentBase and the @Body which comes from

LayoutComponentBase. Once you have those two, you only need to know

that wherever the @body is, that is where your pages will be displayed.

Now, let us look at how you get to your main layout.

�Pages
Now that we know where the pages will appear, we need to find out how

they will get there. As mentioned previously, it is only a matter of one line

to establish a route to a page.

Chapter 3 Blazor server-side

28

Listing 3-7.  Html entry point page

@page "/"

@namespace WebApplication1.Pages

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8" />

 �<meta name="viewport" content="width=device-width,

initial-scale=1.0" />

 <title>WebApplication1</title>

 <base href="~/" />

 �<link rel="stylesheet" href="css/bootstrap/bootstrap.

min.css" />

 <link href="css/site.css" rel="stylesheet" />

</head>

<body>

 �<app>@(await Html.RenderComponentAsync<App>(RenderMode.

ServerPrerendered))</app>

 <script src="_framework/blazor.server.js"></script>

</body>

</html>

Server-side Blazor does not run C# code in the browser; therefore, it

requires an entry point from Razor to Blazor. You will find that in _Host.

cshtml, shown in Listing 3-7. This page is to be used as it is and not to be

changed. Now, if you do need JavaScript, this is where you reference it,

same with the stylesheets. RenderComponentAsync method initiates the

component App.razor, and in there you will find something that handles

all the page routes.

Chapter 3 Blazor server-side

29

Listing 3-8.  Default contents of App.razor

<Router AppAssembly="@typeof(Program).Assembly">

 <Found Context="routeData">

 �<RouteView RouteData="@routeData" DefaultLayout="@

typeof(MainLayout)" />

 </Found>

 <NotFound>

 <LayoutView Layout="@typeof(MainLayout)">

 <p>Sorry, there's nothing at this address.</p>

 </LayoutView>

 </NotFound>

</Router>

The NotFound component (see Listing 3-8) will come in use when

someone tries to access a route that does not exist, and it should not be

modified. However, you may change the contents of NotFound and add

your custom error pages in there. Now that we are done with defaults, we

will take a look at something more custom.

�Components
Components can be placed anywhere in the HTML code just like you

would do it with any HTML element; it just does not have any default

features – events or values. A component is the same kind of file as page

is; in fact, a page can be used as a component and vice versa. You will find

them particularly useful when displaying list outputs, and we will study

them throughout the book.

Chapter 3 Blazor server-side

30

Listing 3-9.  Component parameter

<h3>TestComponent</h3>

<p>@testparameter</p>

@code {

 [Parameter]

 public string testparameter { get; set; }

}

As you can see in the content of the TestComponent.razor page in

Listing 3-9, it is quite straightforward like any other page. The one difference

is the parameter, and that is quite a difference; it works as any parameter

on HTML element would, as if it was “style”, “class”, or “href”, except in this

case it is custom. Here we have a simple string, which gets displayed in the

paragraph. Be aware that even though this looks like any HTML element, it

does not function like one. There are no default parameters like “style” or

“class”; therefore, if you do need to use them, the best way to do it is to wrap the

contents of component in a <div> tag and pass the parameters to that element.

Listing 3-10.  Test page for component parameter

@page "/TestPage"

<p>New test page</p>

<p><WebApplication1.Components.TestComponent

testparameter="this is the test parameter for test

component"></WebApplication1.Components.TestComponent></p>

Every page must have a route as shown in Listing 3-10 (first line),

unless you use the page as a component. The declaration of the route is

very simple; you need to use @page followed by the route. This particular

page also has a component on it, declared as you would declare a class,

using the full namespace using dot notation. The component has a set

parameter, testparameter.

Chapter 3 Blazor server-side

31

�Parameters
Handling parameters is very important. You can use parameters to

determine different states and pass authentication tokens, discount

coupons, and more. This can be very straightforward or a bit complicated,

you will have to choose one of two ways according to your needs.

Listing 3-11.  Parameter display

@page "/TestPage1/{param1}/{param2}"

<p>Parameter 1</p>

<p>@param1</p>

<p>Parameter 2</p>

<p>@param2</p>

@code {

 [Parameter]

 public string param1 { get; set; }

 [Parameter]

 public string param2 { get; set; }

}

The first option is to list the parameters in the route for the page, as shown

in Listing 3-11. You access them by declaring a variable in the @code section

and using the attribute [Parameter]; the name of the variable must match

the name in the route. However, the downside of this option is that you have

to have all your variables in a correct order, so if you have two mandatory

parameters, it will work fine. But what if you have three parameters and none

of them are mandatory, you can have one, two, or all three? The answer is the

second, more complex option. Also, you can have several different routes with

different parameters declared or one route with no parameter; if you only

have one route and parameter is missing, the route will not be found.

Chapter 3 Blazor server-side

32

Listing 3-12.  Page with navigation manager

@page "/TestPage2"

@inject NavigationManager navmanager

@using System.Web;

<p>Parameter 1</p>

<p>@param1</p>

<p>Parameter 2</p>

<p>@param2</p>

@code {

 string param1;

 string param2;

 protected override Task OnInitAsync()

 {

 �var qparams = HttpUtility.ParseQueryString(new

Uri(navmanager.GetAbsoluteUri()).Query);

 param1 = qparams["param1"];

 param2 = qparams["param2"];

 return base.OnInitAsync();

 }

}

The TestPage2.razor page shown in Listing 3-12 contains two variables

in the @code section, param1 and param2. On initialization of the page,

we first need to get a query from the current url. To do that, you will need

to inject NavigationManager and use the method GetAbsoluteUri that

goes into the constructor for a new uri from which you access the property

Query. The Query is passed to ParseQueryString method, which can be

found in System.Web.HttpUtility, and it returns a key value pair with your

query string parameters.

Chapter 3 Blazor server-side

33

�Finished example project
Now, we will take a look at another Blazor project that will bring all

navigation tricks together. The example is quite simple, a basic presentation

web site containing Home page, What we do page, and a contact page.

Before we begin, we will remove all the unnecessary defaults, and

Figure 3-3 shows what it will look like once everything is removed and

additional files are added.

Listing 3-13.  Layout page

<div style="width:100%" >

<label></label>

Home

What we do

Contact us

</div>

<div style="width:100%" >

@Body

</div>

Figure 3-3.  Finished example project

Chapter 3 Blazor server-side

34

Our layout, shown in Listing 3-13, is very basic, but instead of using the

side bar as you can see in the template (Listing 3-6), we only have a top bar

for navigation between pages.

Listing 3-14.  Home page

@page "/"

<div style="width:33%">

 <h1>Painting</h1>

</div>

<div style="width:33%">

 <h1>Sketching</h1>

</div>

<div style="width:33%">

 <h1>Paints and other products</h1>

</div>

For the home page, shown in Listing 3-14, we only have some simple

HTML to fill the space and the default route. Once we have the home page,

we can do something a little more interesting, finish the info page.

Listing 3-15.  Program.cs contents

using System.Collections.Generic;

namespace WebApplication1

{

 public class Program

 {

 �public static Dictionary<string, int> couponDictionary

= new Dictionary<string, int>();

 public static void Main(string[] args)

 {

 for (int i = 0; i < 10; i++)

Chapter 3 Blazor server-side

35

 {

 var rnd = new Random();

 �couponDictionary.Add(Guid.NewGuid().ToString(),

rnd.Next(10, 70));

 }

 CreateHostBuilder(args).Build().Run();

 }

 }

}

For testing, we will generate ten random coupons by simply

establishing a dictionary in Program.cs as shown in Listing 3-15 and

assigning them Guid values as their id and a random value for the discount

amount. You can break after the loop to get a test value for a single coupon.

Listing 3-16.  Coupon service

using System.Threading.Tasks;

namespace WebApplication1.Data

{

 public class CouponService

 {

 public Task<int> CheckCoupon(string coupon)

 {

 try

 {

 �int discountvalue = Program.

couponDictionary[coupon];

 return Task.FromResult(discountvalue);

 }

Chapter 3 Blazor server-side

36

 catch

 {

 return Task.FromResult(0);

 }

 }

 }

}

In Listing 3-16, our service simply contains one method that returns an

integer, which is the value of your discount coupon. In case the coupon is

not found, the error is handled and 0 is returned.

Listing 3-17.  Service registry

public void ConfigureServices(IServiceCollection services)

{

 services.AddRazorPages();

 services.AddServerSideBlazor();

 services.AddSingleton<CouponService>();

}

As always, you need to register your service in the Startup.cs, as shown

in Listing 3-17; if you do not do this, you will get an error.

Listing 3-18.  Information page

@page "/InfoPage/{coupon}"

@page "/InfoPage"

@inject Data.CouponService cpnservice

<div style="width:33%">

 <h1>Painting</h1>

 <p>We do it quickly</p>

</div>

Chapter 3 Blazor server-side

37

<div style="width:33%">

 <h1>Sketching</h1>

 <p>We do it accurately</p>

</div>

<div style="width:33%">

 <h1>Paints and other products</h1>

 <p>Highest quality</p>

</div>

@if (discountvalue != 0)

{

 <div>

 <p>You are eligible for @discountvalue % discount</p>

 </div>

}

@code {

 double discountvalue = 0;

 [Parameter]

 public string coupon { get; set; }

 protected override async Task OnInitializedAsync()

 {

 discountvalue = await cpnservice.CheckCoupon(coupon);

 }

}

The InfoPage shown in Listing 3-18 contains two routes because the

coupon parameter is optional. However, since we only have one simple

parameter, we can use the default way (Listing 3-11) to implement it. With

that, we have some basic HTML just to see the difference between pages.

After that, we get to the coupon check.

Chapter 3 Blazor server-side

38

First the coupon service is injected under name cpnservice, and then

we set up a variable for the discount value and an if statement to check if it

is equal to 0 or not. The discount box is displayed and the value is shown

in the paragraph if the value is different to 0. We only evaluate the variable

once and that is when the page loads. It is done by simply executing

CheckCoupon and assigning the return value to the discountvalue variable.

After we are done with the InfoPage, we will get to the contact page

which will contain general information and a contact form component.

First, we need to establish the component which will also require a service

for sending the message to the email.

Listing 3-19.  contact us page

using System;

using System.Net.Mail;

using System.Threading.Tasks;

namespace WebApplication1.Data

{

 public class ContactService

 {

 �public Task<bool> SendMessage(string name, string

email, string messagebody)

 {

 try

 {

 �MailMessage message = new MailMessage(email,

"yoursupportemail", "question by " + name,

messagebody);

 message.IsBodyHtml = true;

 �SmtpClient client = new

SmtpClient("emailclient", 465);

 client.EnableSsl = true;

 client.Timeout = 30;

Chapter 3 Blazor server-side

39

 �client.Credentials = new System.

Net.NetworkCredential("youremail",

"youremailpass");

 client.Send(message);

 return Task.FromResult(true);

 }

 catch (Exception ex)

 {

 return Task.FromResult(false);

 }

 }

 }

}

As shown in Listing 3-19, this service also gives you an example on

how you would send your email. We only have one simple method in

the service which takes in name and puts it in the title of the email, then

takes an email, and sets it as destination address, and finally the message

is taken and inserted in the body of the email. The return of the service

method is very simple; you either have success (true) or failure (false) of

sending the email.

Listing 3-20.  Service registry

public void ConfigureServices(IServiceCollection services)

{

 services.AddRazorPages();

 services.AddServerSideBlazor();

 services.AddSingleton<CouponService>();

 services.AddSingleton<ContactService>();

 }

}

Chapter 3 Blazor server-side

40

Before you go any further, you need to register your service, as shown

in Listing 3-20. After you do that, we can move on to the contact form

component.

Listing 3-21.  Contact component

@inject Data.ContactService cnservice

<p>Name</p>

<p><input bind="@name"></p>

<p>Email</p>

<p><input bind="@email"></p>

<p>Message</p>

<p><textarea bind="@message"></textarea></p>

<p><button onclick="@(new Action (() =>

SendMessageAsync()))">Send</button></p>

@if (displayboxopened)

{

 <p>@displayboxmessage</p>

}

@code {

 public string name;

 public string email;

 public string message;

 public bool displayboxopened = false;

 public string displayboxmessage;

Chapter 3 Blazor server-side

41

 public async void SendMessageAsync()

 {

 if (await cnservice.SendMessage(name,email,message))

 {

 displayboxmessage = "Message sent succesfully";

 displayboxopened = true;

 await Task.Delay(7000);

 displayboxopened = false;

 }

 else

 {

 displayboxmessage = "Sending failed, try again";

 displayboxopened = true;

 await Task.Delay(7000);

 displayboxopened = false;

 }

 }

}

The component shown in Listing 3-21 is filled with lots of useful

things and neat tricks; we will get to those in due time. First, we need to

notice the injection of the service, and since this is a component, there is

no route. There are three input boxes and three variables, and as you can

see, the textarea tag can also be bound just like the input tag. With that, we

have another set of variables, one for checking if a display box should be

displayed (displayboxopened) and the contents of it – that is either success

message or failure warning. Of course, this is quick way, but it is a crude way;

if you want the box to pop up in a more fashionable manner, you should

insert or remove different classes of CSS. The component only has one

method, which is executed on the click of the button. It simply sends the

message and returns a Boolean value which is evaluated in the if statement.

Chapter 3 Blazor server-side

42

The interesting thing here is the disappearing notification box; as you can

see, we are easily doing that simply by adding a delay and then changing the

state of the box back to hidden.

Listing 3-22.  Contact us page

@page "/ContactPage"

<div style="width:50%">

 <p>We are located in</p>

 <p>Address, City, Country</p>

</div>

<div style="width:50%">

 <WebApplication1.ContactComponents.ContactFormComponent>

 </WebApplication1.ContactComponents.ContactFormComponent>

</div>

Finally, we have our contact page as shown in Listing 3-22 with

a simple route declaration. With that, you will find some location

information, and on the side of the page, we have our contact form

component inserted.

As you can see, we use no JavaScript at all. This will save you a lot of

time, and in such a case, you would only need to hire a designer to do the

CSS for HTML; everything else can be done by you in C#.

�Summary
When it comes to specific types of Blazor, you will eventually notice how

they are quite similar in general. The main difference is how they start and

how they function; one thing to remember about the server-side is that it

runs on the server-side. In the next chapter, we will cover the client-side

Blazor, a type of Blazor that runs on the browser.

Chapter 3 Blazor server-side

43© Taurius Litvinavicius 2019
T. Litvinavicius, Exploring Blazor, https://doi.org/10.1007/978-1-4842-5446-2_4

CHAPTER 4

Blazor Client-side
In the previous chapter, we have covered a type of Blazor that runs your

front-end logic on the server; in this case, we will cover a type that runs

directly in the browser.

In this chapter, we will learn

•	 Startup of the app

•	 How to clean up the template

•	 Components

•	 Reusing and removing components

�Default Template Overview
We will now look at the default template and understand how the client-

side Blazor works. You will find some interesting differences between

this one and the server-side template, as well as you will learn how to

customize things when needed.

�Program and Startup
As usual, the web application is a console application, and it starts with a

Program.cs and the main method in it. The difference here is that this runs

on the browser, not on the server, so the host builder will be completely

different. For the most part, Blazor server and client options are exactly the

same; the major difference is in startup of things.

44

Listing 4-1.  Program.cs

using Microsoft.AspNetCore.Blazor.Hosting;

namespace WebApplication1

{

 public class Program

 {

 public static void Main(string[] args)

 {

 CreateHostBuilder(args).Build().Run();

 }

 �public static IWebAssemblyHostBuilder

CreateHostBuilder(string[] args) =>

 BlazorWebAssemblyHost.CreateDefaultBuilder()

 .UseBlazorStartup<Startup>();

 }

}

You can see that the program (Listing 4-1) does create a host builder,

but it is a web assembly host builder. This whole thing works by default;

therefore, it is not necessary to look at it too much. One thing to note, if you

want to do something in the main method (e.g., get environment variable),

you need to do it after the CreateHostBuilder. If you do anything before,

the application will not load. The more interesting part is the Startup.cs.

Listing 4-2.  Index.html – entry page

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <meta name="viewport" content="width=device-width">

Chapter 4 Blazor Client-side

45

 <title>WebApplication1</title>

 <base href="/">

 �<link href="css/bootstrap/bootstrap.min.css"

rel="stylesheet">

 <link href="css/site.css" rel="stylesheet">

</head>

<body>

 <app>Loading...</app>

 <script src="_framework/blazor.webassembly.js"></script>

</body>

</html>

Listing 4-2 shows the index.html contents, the file found in wwwroot

folder. These contents are generated for the template and should not be

modified with the exceptions mentioned later.

Listing 4-3.  Startup.cs

using Microsoft.AspNetCore.Components.Builder;

using Microsoft.Extensions.DependencyInjection;

namespace WebApplication1

{

 public class Startup

 {

 �public void ConfigureServices(IServiceCollection

services)

 {

 }

Chapter 4 Blazor Client-side

46

 �public void Configure(IComponentsApplicationBuilder app)

 {

 app.AddComponent<App>("app");

 }

 }

}

The startup is very straightforward and very empty; however, you

can still use it for configuration. The important thing, again, is not to

forget that this all happens on client-side. The main part of this is the

AddComponent<App> (Listing 4-3), which basically adds our App.razor

to the <app></app> (Listing 4-2) element in the html (Listing 4-2). In the

template, this would replace the text “Loading…”; however, in real-world

application, you might want to put an image with a loader gif there. It is

likely that bigger apps will take a few seconds to load; therefore, it may not

be too pretty to just have text there.

Listing 4-4.  App.razor

<Router AppAssembly="@typeof(Program).Assembly">

 <Found Context="routeData">

 �<RouteView RouteData="@routeData" DefaultLayout=

"@typeof(MainLayout)" />

 </Found>

 <NotFound>

 <LayoutView Layout="@typeof(MainLayout)">

 <p>Sorry, there's nothing at this address.</p>

 </LayoutView>

 </NotFound>

</Router>

As you can see, the App.razor file (Listing 4-4) contains a router

which handles all the routing. You will also find a NotFound placement

and remember that at this point you are already using Blazor; therefore,

Chapter 4 Blazor Client-side

47

you could add your error message as a custom component that you have

created. The actual pages are generated where the @body is placed, and

that requires an inheritance from LayoutComponentBase.

�Clean Up the Template
Blazor projects provide a nice template to get a basic overview on how Blazor

technology works. However, in most cases you will not need a lot of the

default stuff. Therefore, you need to understand how to clean it up, so that

every major part stays as template suggests, but the non-essentials disappear.

Figure 4-1.  Blazor client-side default template contents

Figure 4-1 shows the contents of the default project template.

Everything is as generated for the template, and nothing has been

modified yet.

Chapter 4 Blazor Client-side

48

If you want to clean up your template and leave only the essentials, you

will need to start with files. In short, you will need to go from Figure 4-1 to

Figure 4-2, and you will achieve that by removing css folder in wwwroot,

sample-data folder in wwwroot, both sample .razor pages in the Pages

folder, and everything in Shared folder except for MainLayout.razor.

Listing 4-5.  Cleaned layout template

@inherits LayoutComponentBase

<div>

 @Body

</div>

In terms of deleting code, you only need to clean Index.razor and

leave only @page for the route and clean up the MainLayout (Listing 4-5)

as shown earlier. Of course, you will want to use your custom navigation

structure in the main layout, but this is a good place to start.

Figure 4-2.  Client-side template after cleaning

Chapter 4 Blazor Client-side

49

�Navigation
The navigation works the same way as it does on the server-side; you have

to use the @page to set the route for a page and you can pass parameters

in two different ways. We will take a few more samples on how you can

structure your navigation.

Figure 4-3.  Project structure for the navigation example

For this example, we have a total of five-page files (Figure 4-3). We

will see how to work with routes and how to navigate from C# code

directly. You can already see that it is possible to put pages in folders; this

is especially helpful when you have large amounts of pages. In this case,

we can clearly see where our basic pages will be found and where our

advanced pages will be.

Chapter 4 Blazor Client-side

50

Listing 4-6.  Basic page

@page "/page1"

<p>Basic page 1</p>

Listing 4-7.  Page with navigation manager

@page "/page2"

@inject NavigationManager navmanager

<p>Basic page 2</p>

<p><button @onclick="@TestNavigate">Go to page 1</button></p>

@code {

 void TestNavigate()

 {

 navmanager.NavigateTo("/page1");

 }

}

Our first basic page (Listing 4-6) is a very simple one; it only has a

route and a statement saying that it is page 1. You have seen such a page

many times before, and you will find it many times in the future; the more

interesting one is the second basic page (Listing 4-7). This one also has a

route, but this page will allow us to navigate using C#. To do that, we need

to use NavmanagerNavigationManager, which is also useful for parameter

management – something that was covered in the previous chapter. To

navigate, you simply use NavigateTo method which takes the route for your

page. In this example, on the button click we would navigate to the first

basic page.

Chapter 4 Blazor Client-side

51

Listing 4-8.  Advanced page

@page "/advancedpage1"

<p>This is the advanced page 1</p>

Listing 4-9.  Advanced page with parameters

@page "/advancedpage1/{param1}"

<p>This is the advanced page 1</p>

<p>parameter: @param1</p>

@code {

 [Parameter]

 public string param1 { get; set; }

}

With the first advanced page (Listing 4-8), we want to explore pages

with similar routes. The first page has only a simple route and the name for

the page displayed. For the second page (Listing 4-9), we have the same

route with the exception of a parameter which is displayed in the page. You

can use it when you have a page which is displayed completely differently

when a parameter is supplied and when there is no parameter. If the page

contents are almost identical, the next option may better suit your needs.

Listing 4-10.  Page with two routes

@page "/advancedpage2/{param1}"

@page "/advancedpage2"

<p>This is the advanced page 2</p>

@if (param1 != null)

{

 <p>parameter: @param1</p>

}

Chapter 4 Blazor Client-side

52

@code {

 [Parameter]

 public string param1 { get; set; }

}

As you can see, in this page (Listing 4-10) we have two routes – two

simple routes, one basic and the other with a parameter. In this case, we

simply check if parameter was supplied and display it.

Listing 4-11.  Navigation page

<div>

 <ul class="nav flex-column">

 <li class="nav-item px-3">

 <NavLink class="nav-link" href="/page1">

 Basic page 1

 </NavLink>

 <li class="nav-item px-3">

 <NavLink class="nav-link" href="/page2">

 Basic page 2

 </NavLink>

 <li class="nav-item px-3">

 <NavLink class="nav-link" href="/advancedpage1">

 Advanced page 1

 </NavLink>

 <li class="nav-item px-3">

 �<NavLink class="nav-link" href="/advancedpage1/

testparam">

Chapter 4 Blazor Client-side

53

 Advanced page 1 with parameters

 </NavLink>

 <li class="nav-item px-3">

 <NavLink class="nav-link" href="advancedpage2">

 Advanced page 2

 </NavLink>

 <li class="nav-item px-3">

 �<NavLink class="nav-link" href="advancedpage2/

testparam">

 Advanced page 2 with parameters

 </NavLink>

</div>

For the navigation (Listing 4-11), we have it all set up in the NavMenu

component. You can also notice how some of these routes take parameters

in them for our examples.

�Components
Components are just like pages; in fact, they are pages or pages are

components. Any .razor file can be used as a component, but if it has a

route declaration, it can be navigated to as page.

Chapter 4 Blazor Client-side

54

To understand components better, we have a little project (Figure 4-4),

with three different components. The first two will explore sharing of

variables between parent and child and the issues that come with that. The

third component will be covered in the next part.

Listing 4-12.  Simple parameter pass-through

<input @onchange="@TestChanged" />

@code {

 [Parameter]

 public Action<UIChangeEventArgs> TestChanged { get; set; }

}

The first option (Listing 4-12) is to create a rather complex system of

events and event argument checks. However, at this point this is the most

efficient and the simplest to use option. In the component we first have a

Figure 4-4.  Blazor client-side project with example component files

Chapter 4 Blazor Client-side

55

custom event, which basically just binds to the generic onchange event in

the input element. What we are really looking for is the new value, and that

is what we will retrieve from parent.

Listing 4-13.  Index.razor contents

@page "/"

<p><BlazorApp1.Components.FirstComponent TestChanged="@((args)

=> settest(args))"></BlazorApp1.Components.FirstComponent></p>

<p>@test</p>

@code {

 string test;

 void settest(UIChangeEventArgs args)

 {

 test = (string)args.Value;

 }

In the Index.razor (Listing 4-13), we declare the component and access

the TestChanged event as we would do any other generic event on generic

variables. The method executed on TestChanged event simply takes the

change arguments and assigns the new value to an already declared test

variable.

Listing 4-14.  Binds with static variables

<input @bind="@DataHolder.testvariable" />

<p>@DataHolder.testvariable</p>

What might also be a good idea is to simply have a static variable

(Listing 4-14) in some other class, but it does not actually work. In this

case, we have our DataHolder.cs class, with a static string testvariable.

If you look at the code in the component, that would work perfectly, but it

Chapter 4 Blazor Client-side

56

would only work in this component. As you will see, the parent can also

bind to the variable, but only separately.

Listing 4-15.  Index page

<p><BlazorApp1.Components.SecondComponent></BlazorApp1.

Components.SecondComponent></p>

<p>General variable</p>

<p>@DataHolder.testvariable</p>

<p><input @bind="@DataHolder.testvariable" /></p>

In the Index.razor (Listing 4-15), we add our component, and then

we display the variable and also bind it with an input field. Unfortunately,

the updates only occur on the page where change happened. So, if you

change it in this page, it will display here, but it will not do the same in the

component or vice versa.

�Using Key to Preserve Components
Another important feature of components is the preservation. This works

great when your interface needs to add or remove an item. When you

loop through elements and display them, every time the loop occurs, your

elements will be destroyed and re-created. To preserve them, you need to

use something called key, and the best way to understand it is to see it.

Listing 4-16.  Component with key

<p>@keyforcomponent</p>

@code {

 [Parameter]

 public Guid keyforcomponent { get; set; }

}

Chapter 4 Blazor Client-side

57

<p><button @onclick="@AddElement">Add</button></p>

@foreach (var item in ElementList)

{

 �<p><button @onclick="@(() => RemoveElement(item))">Remove

</button></p>

 <p><BlazorApp1.Components.ThirdComponent @key="item"

keyforcomponent="item"></BlazorApp1.Components.

ThirdComponent></p>

}

@code {

 List<Guid> ElementList = new List<Guid>();

 void AddElement()

 {

 ElementList.Add(Guid.NewGuid());

 }

 void RemoveElement(Guid id)

 {

 ElementList.Remove(id);

 }

}

Our component (Listing 4-16) in this case simply takes the key or

the id as we call it and displays it. Do note that we only display the id for

showcasing purposes and it is not mandatory to do so. In our Index.razor,

we have a list variable established which will contain Guid types. We also

have AddElement and RemoveElement methods. They will both trigger

the foreach loop, which simply loops through the list and creates our

component for each cycle. The interesting part here is the passing of @key

property, which by default you can find in every component. This unique

Chapter 4 Blazor Client-side

58

key is what will preserve that element not to be re-evaluated. This is very

useful if you want to display list of products or list of items for some form

where you might need to add or remove items, but leave the current ones

with the values inserted or displayed.

�Example
Now we will take a look at a simple example that will explore navigation

parameters and component use, as well as the general Blazor interaction.

We only have a simple sign-up form and a preview page.

Figure 4-5.  Example project structure

As you may notice, we will be using two types of layouts (Figure 4-5) in

this project, and you will see exactly how to accomplish that.

Chapter 4 Blazor Client-side

59

Listing 4-17.  Component with parameters and callbacks

 <div style="width:300px;">

 <div style="width:50px;">

 @title

 </div>

 <div style="width:250px;">

 @description

 </div>

 <div style="width:250px;">

 <button @onclick="@delete">Delete</button>

 <p>@tst</p>

 </div>

 </div>

@code {

 [Parameter]

 public string id { get; set; }

 [Parameter]

 public string title { get; set; }

 [Parameter]

 public string description { get; set; }

 [Parameter]

 public EventCallback<string> OnDelete { get; set; }

 async void delete()

 {

 await OnDelete.InvokeAsync(id);

 }

}

Chapter 4 Blazor Client-side

60

Listing 4-18.  Hobby model

namespace BlazorApp1

{

 public class HobbyModel

 {

 public string id { get; set; }

 public string title { get; set; }

 public string description { get; set; }

 }

}

First, we need to create a component (Listing 4-17) for a hobby, which

will be used as a list, and the user will be able to add or remove them. Of

course, you do not have to use a component, but it is more convenient to

do that in the long run. For the hobby, we also have a model (Listing 4-18),

which we will only use in the parent page for the component. The hobby

is created in the parent, added to the list, and then displayed; therefore,

we do not have any input fields – we simply display what was inserted and

allow for deletion, which is something we will explore later.

Listing 4-19.  Page with navigation manager

@page "/signuppage"

@inject NavigationManager navmanager

@using Newtonsoft.Json

<p>First name</p>

<p><input @bind="@firstname"></p>

<p>Second name</p>

<p><input @bind="@surname"></p>

<p>Bio</p>

<p><textarea @bind="bio"></p>

Chapter 4 Blazor Client-side

61

<p>Hobbies</p>

<p>Title</p>

<p><input @bind="@newhobby.title"></p>

<p>Description</p>

<p><textarea @bind="@newhobby.description" /></p>

<p><button @onclick="@AddHobby" >Add hobby</button></p>

<p>My hobbies</p>

@foreach (var item in hobbies)

{

 <HobbyItem @key="@item.id" id="@item.id" title="

@item.title" OnDelete="DeleteHobby" description="@item.

description"></HobbyItem>

}

<p><button @onclick="@Submit">Submit</button></p>

@code {

 string firstname { get; set; }

 string surname { get; set; }

 string bio { get; set; }

 �HobbyModel newhobby = new HobbyModel() { id = Guid.

NewGuid().ToString() };

 �List<HobbyModel> hobbies { get; set; } = new

List<HobbyModel>();

 void AddHobby()

 {

 hobbies.Add(newhobby);

 �newhobby = new HobbyModel() { id = Guid.NewGuid().

ToString() };

 }

Chapter 4 Blazor Client-side

62

 void DeleteHobby(string id)

 {

 �hobbies.Remove(hobbies.Where(x => x.id == id).

ToArray()[0]);

 }

 void Submit()

 {

 var json = JsonConvert.SerializeObject(hobbies);

 �navmanager.NavigateTo("/previewpage/" + firstname + "/"

+ surname + "/" + bio + "/" +json);

 }

}

We start the Sign up page (Listing 4-19) by declaring a route to it, as

well as adding some dependencies that will be used and explored a bit

later. The user has three fields to be field: first name, second name, and

bio. As you can see, the variables for those are declared in the code section,

and they are bound to input elements and textarea for the bio. This is the

most straightforward and the most practical approach to take. The more

interesting part is the newhobby variables, which have their properties

bound to the appropriate input fields. You may also notice how the list of

hobbies is not only declared but assigned too. This way, we do not have to

check for null values. A hobby is added in the AddHobby method, which

simply adds the current hobby object to the list and creates a new one.

So far, everything seems quite simple, but the difficult part is yet to

come. Hobby components are displayed in every cycle of the loop, where

we use keys to preserve existing elements although in this case that is not

required. More importantly, we pass the id and keep it in the component.

The component (Listing 4-17) has an event callback declared with a return

type of string. The delete button in the component invokes the callback

by passing the id of that component. This is how you create a completely

Chapter 4 Blazor Client-side

63

custom event for your component. The parent page (Listing 4-19) has a

method DeleteHobby which is executed when the callback is invoked, or

in other words when the event occurs. Then, the DeleteHobby method

takes the string argument (id for the hobby) and with some Linq magic

removes the element with that id from the list.

Finally, we want to get to the preview and that is where things get

complex. If you are passing parameters to a component, everything is

quite simple; unfortunately, it is not the same if you do it for a page.

Listing 4-20.  Page with parameters

@page "/previewpage/{firstname}/{surname}/{bio}/{hobbies}"

@using Newtonsoft.Json

@layout EmptyLayout

<p>First name: @firstname</p>

<p>Second name: @surname</p>

<p>bio: @bio</p>

<p>Hobbies:</p>

@if (hobbieslist != null)

{

 @foreach (var item in hobbieslist)

 {

 <p>id: @item.id</p>

 <p>title: @item.title</p>

 <p>description: @item.description</p>

 }

}

<p><button>Submit</button></p>

@code {

 [Parameter]

 public string firstname { get; set; }

Chapter 4 Blazor Client-side

64

 [Parameter]

 public string surname { get; set; }

 [Parameter]

 public string bio { get; set; }

 [Parameter]

 public string hobbies { get; set; }

 List<HobbyItem> hobbieslist;

 protected override void OnParametersSet()

 {

 �hobbieslist = ((Newtonsoft.Json.Linq.JArray)

JsonConvert.DeserializeObject(hobbies)).

ToObject<List<HobbyItem>>();

 }

}

Our preview page (Listing 4-20) contains four parameters, and you

may already notice where the simplicity disappears. In the query string,

we can only pass string content; therefore, more complex object needs to

be serialized. This is done in our sign up page (Listing 4-19), where submit

method first serializes the list to JSON string and only then adds it to the

query string for navigation. We retrieve it as a string parameter (Listing 4-20)

hobby and only then deserialize it to our object in a very complex way. A good

way to get rid of that complexity would be to simply have a static variable

somewhere in the code and read it once the preview page is initialized.

As you have seen in this example, using components is always a good

decision, even when we need to deal with callbacks to bind data two

ways. The parameters are useful and easy to pass, but do not forget that

only works for component. Once you get to the pages, you have to be very

careful with parameters. They should only be used when data needs to be

passed from outside sources.

Chapter 4 Blazor Client-side

65

�Summary
As you may have noticed, you will mostly use client-side Blazor for your

front end alongside a back end. There is, however, a way to avoid having

two different projects; that way is Blazor hosted and that is what we will

cover in the next chapter.

Chapter 4 Blazor Client-side

67© Taurius Litvinavicius 2019
T. Litvinavicius, Exploring Blazor, https://doi.org/10.1007/978-1-4842-5446-2_5

CHAPTER 5

Blazor hosted
The previous chapters covered a type of Blazor that runs on the server-side

and the type that runs in the browser. This chapter will cover the hosted

type of Blazor, which essentially is client-side Blazor combined with web

api project.

�Default template overview
Like the other types of Blazor, this one too has its own template. It is

however as lot more complicated both in its size and its structure.

�General structure
The structure of Blazor hosted project is rather complex; fortunately for us,

everything is taken care of in the template. Essentially, you have a shared

assembly for API project, client-side project, and a shared .NET standard

library to hold shared data models. Also important to note, the client-side

project is served from the API project, not vice versa.

68

Figure 5-1 shows the first part of the solution, in this case called client,

which is basically client-side Blazor template.

Figure 5-2 shows the web api project in the solution. It will be used as

the back-end part of the client-side project.

Figure 5-1.  Client-side Blazor project in the solution

Figure 5-2.  Server-side Blazor project in the solution

Figure 5-3.  Shared library .net standard project in the solution

Chapter 5 Blazor hosted

69

As you can see (Figure 5-3), the hosted project contains the same

template for client part as the client-side template. The server part has

a simple controller for the default template example. Finally, the Shared

library has one sample model. Do note the library always has to have a

class to work at all.

Listing 5-1.  Startup.cs

using Microsoft.AspNetCore.Builder;

using Microsoft.AspNetCore.Hosting;

using Microsoft.AspNetCore.ResponseCompression;

using Microsoft.Extensions.DependencyInjection;

using Microsoft.Extensions.Hosting;

using Newtonsoft.Json.Serialization;

using System.Linq;

namespace BlazorApp1.Server

{

 public class Startup

 {

 �public void ConfigureServices(IServiceCollection

services)

 {

 services.AddMvc().AddNewtonsoftJson();

 services.AddResponseCompression(opts =>

 {

 �opts.MimeTypes = ResponseCompressionDefaults.

MimeTypes.Concat(

 new[] { "application/octet-stream" });

 });

 }

Chapter 5 Blazor hosted

70

 �public void Configure(IApplicationBuilder app,

IWebHostEnvironment env)

 {

 app.UseResponseCompression();

 if (env.IsDevelopment())

 {

 app.UseDeveloperExceptionPage();

 app.UseBlazorDebugging();

 }

 app.UseStaticFiles();

 app.UseClientSideBlazorFiles<Client.Startup>();

 app.UseRouting();

 app.UseEndpoints(endpoints =>

 {

 endpoints.MapDefaultControllerRoute();

 �endpoints.MapFallbackToClientSideBlazor<Client.

Startup>("index.html");

 });

 }

 }

}

Listing 5-1 shows the Startup.cs file in the default template project; it is

shown as it is generated.

Chapter 5 Blazor hosted

71

Listing 5-2.  Startup.cs for client

using Microsoft.AspNetCore.Components.Builder;

using Microsoft.Extensions.DependencyInjection;

namespace BlazorApp1.Client

{

 public class Startup

 {

 public void ConfigureServices(IServiceCollection services)

 {

 }

 public void Configure(IComponentsApplicationBuilder app)

 {

 app.AddComponent<App>("app");

 }

 }

}

As mentioned previously, client-side comes from the server-

side. So, we need to start with the server-side Startup.cs. First, in the

ConfigureService (see Listing 5-2), you will notice a lot of API-related

things, and that is because essentially it is an API. The Blazor part starts

in the Configure method, where you will find UseClientSideBlazorFiles;

this is what launches the client-side startup and we will get back

to that later. Another important part of this is the endpoints –

MapDefaultControllerRoute basically takes care of the API routes and

then MapFallbackToClientSideBlazor will deal with the page routes. We

also have Blazor debugging added with UseBlazorDebugging, which is not

mandatory. It would be best practice not to change anything in here, but if

you do change Startup.cs to another name, make sure you change it in both

places. The hosted client-side part, as you can see, is exactly the same as

you would find in the client-side template.

Chapter 5 Blazor hosted

72

�Clean up the template
The templates in Visual Studio are very useful and will save you lots of

time. Despite all that, templates contain examples and other contents that

you do not need. So now you will see how to safely clean it up.

To understand this better, we have two projects: one with default

contents and the other containing only what you will need.

Figure 5-5 shows server-side project.

Figure 5-4.  Client-side Blazor project in the solution

Chapter 5 Blazor hosted

73

Figure 5-6 shows shared library .net standard project.

Figure 5-7 shows cleaned template.

Figure 5-5.  Server-side Blazor project in the solution

Figure 5-6.  Shared library .net standard project in the solution

Chapter 5 Blazor hosted

74

As you may have already noticed, initial template (Figures 5-4, 5-5,

and 5-6) is filled with lots of unnecessary files and code. As far as files are

concerned, simply look at the cleaned template (Figure 5-7) and delete all

the unnecessary ones to get to that result.

After you are done with cleaning the files, the code, for the most part,

is up to you to decide. Index.razor does need to be cleaned as it contains

Survey prompt component (SurveyPromt.razor) which at that point will no

longer exist. Other than that, you should completely clean the MainLayout.

razor, as you will more than likely need to customize that, and it will be a

lot quicker to do it from scratch.

Figure 5-7.  Cleaned template

Chapter 5 Blazor hosted

75

�Navigation
Navigation in hosted Blazor works the same way as it does for server-side

or client-side, after all – host is part client-side Blazor, part api project.

However, there is a big difference, or rather something to watch for. Both

api and pages parts will run under the same domain; therefore, the routes

are shared and conflicts may arise. Obviously, to avoid that, you simply

do not set the same route for two things. But that may be easier said than

done, so let us look at some possible structures.

Figure 5-8 shows the client-side Blazor part, with two test pages. Also,

the template has been cleaned and prepared for work.

Figure 5-8.  Client part of the project

Chapter 5 Blazor hosted

76

For this example, we have cleaned up the template (see Figure 5-9)

set up two pages in the client part. For the server part, we simply have one

controller.

Listing 5-3.  Page with conflicted route

@page "/conflictedroute"

<p>test page</p>

Listing 5-4.  Test controller

using Microsoft.AspNetCore.Mvc;

namespace BlazorApp1.Server.Controllers

{

 public class TestController : Controller

 {

 [Route("conflictedroute")]

 public string conflictedroutemethod()

 {

 return "test";

 }

 }

}

Figure 5-9.  API part of the project

Chapter 5 Blazor hosted

77

First, you can see the conflict between the route of TestPage.razor and

the route of the Test controller (see Listings 5-3, 5-4). This will not cause an

error, but instead the controller route will take priority.

Listing 5-5.  Second test page

@page "/secondtestpage"

<p>Second test page</p>

The best way to avoid this is to create a naming system. A truly logical

way to name pages is by adding the word “page” (see Listing 5-5) on the

end of route.

�API calls
While in JavaScript you only had one way to make a request and of course

hundreds of third-party implementations, in c# there are at least three

major ways to do it. Before we begin, we will prepare a few routes on the

back end for testing those ways.

Listing 5-6.  Test object model

namespace BlazorApp1.Shared

{

 public class TestObject

 {

Figure 5-10.  Shared library for the example project

Chapter 5 Blazor hosted

78

 public int a { get; set; }

 public string b { get; set; }

 public double c { get; set; }

 }

}

First, we create a shared model for data (see Figure 5-10 and Listing 5-6)

that we will post and retrieve; you will see how that works client-side. As you

can see in the code, we only have three properties with three different basic

data types.

Listing 5-7.  Test controller

using Microsoft.AspNetCore.Mvc;

namespace BlazorApp1.Server.Controllers

{

 public class TestController : Controller

 {

 [Route("api/test1")]

 public string Test1()

 {

 return "response 1";

 }

Figure 5-11.  Web api part of the solution

Chapter 5 Blazor hosted

79

 [Route("api/test2")]

 public Shared.TestObject Test2()

 {

 �return new Shared.TestObject() { a = 5, b = "test

string", c = 0.5 };

 }

 [Route("api/test3")]

 �public Shared.TestObject Test3([FromBody]Shared.

TestObject tobj)

 {

 tobj.a += 15;

 �tobj.b += " works and uses header: " + Request.

Headers["headervalue"];

 tobj.c = 15;

 return tobj;

 }

 [Route("api/test4")]

 �public Shared.TestObject Test4([FromForm]Shared.

TestObject tobj)

 {

 tobj.a = 15;

 �tobj.b += " works and uses header: " + Request.

Headers["headervalue"];

 tobj.c = 15;

 return tobj;

 }

 }

}

Chapter 5 Blazor hosted

80

In the controller (see Listing 5-7), we have four basic routes for

different kinds of calls in the client-side. The first one simply returns a

string; we will need this because you retrieve a string a different way than

the other object. On the second one, we will have JSON object returned

to us on response. Finally, the third and fourth ones are the same, and

they will read our object on request and return a modified version of it on

response. The reason we need two routes for the same thing is because we

want to test both Application/JSON and form-data ways of posting.

Our client-side part contains a couple of pages (see Figure 5-12) –

SimpleRequestPage.razor and ComplexRequestPage.razor. In one of them,

we will try the simplest and most efficient way to make API calls on Blazor

and the other one will explore a more sophisticated option.

Figure 5-12.  Project with http request pages

Chapter 5 Blazor hosted

81

Listing 5-8.  Main page with navigation links

@page "/"

<p> <NavLink href="complexrequestpage">complex request

page</NavLink></p>

<p><NavLink href="simplerequestpage">simple request

page</NavLink></p>

In the Index.razor (see Listing 5-8), we simply have two navigation

elements to reach our pages.

�JSONfull way
This option allows you to send your object directly, as well as retrieve them

to your object. There is no additional conversion required, but there are

some restrictions and limitations with this method.

Listing 5-9.  Simple request page

@page "/simplerequestpage"

@inject HttpClient http

<p><button @onclick="@(async () => await GetTest())">get

test</button></p>

<p><button @onclick="@(async () => await GetTest1())">get

test with object</button></p>

<p><button @onclick="@(async () => await GetTest2())">post

test</button></p>

<p>@testouput</p>

<p>@tobj.a</p>

<p>@tobj.b</p>

<p>@tobj.c</p>

Chapter 5 Blazor hosted

82

@code {

 string testouput;

 �BlazorApp1.Shared.TestObject tobj = new BlazorApp1.Shared.

TestObject();

 protected override Task OnInitializedAsync()

 {

 http.DefaultRequestHeaders.Add("headervalue", "tst");

 return base.OnInitializedAsync();

 }

 async Task GetTest()

 {

 try

 {

 testouput = await http.GetStringAsync("api/test1");

 }

 catch (Exception e)

 {

 testouput = e.Message;

 }

 }

 async Task GetTest1()

 {

 �tobj = await http.GetJsonAsync<BlazorApp1.Shared.

TestObject>("api/test2");

 }

Chapter 5 Blazor hosted

83

 async Task GetTest2()

 {

 �tobj = await http.PostJsonAsync<BlazorApp1.Shared.

TestObject>("api/test3", tobj);

 }

}

Listing 5-10.  Api call

try

 {

 testouput = await http.GetJsonAsync("api/test1");

 }

 catch (Exception e)

 {

 testouput = e.Message;

 }

As you can see (Listing 5-9), we have three methods for our three routes

in the server part. First, of course, we declare the route for the page, and

after that, we need to inject our HttpClient; this is what will do all that there

is to do related to APIs. First, let us take a look at the GetTest method, which

may seem like the simplest one, but you do have to be careful with it. When

you have a string, you need to use GetStringAsync to retrieve it. While it

may look possible to do GetJsonAsync, as it is shown in other methods, it is

actually not. You can try it by changing the code in the GetTest method with

the code provided (Listing 5-10). Also, it is always a good idea to handle

errors in try/catch statement, as there is no other way to check for failures.

The next option for us is the GetJsonAsync, and this is where the

Shared models come into play. As you can see in the code, we have a

variable named tobj – that is our TestObject model. The variables in

the object are displayed in HTML paragraphs for us to see the result.

Chapter 5 Blazor hosted

84

In the GetTest1, we simply assign the return of GetJsonAsync method,

which simply requires us to supply the return type and the route as a

parameter. Later, we will explore the downfalls of it, but you will also see

how efficient in terms of coding this can be. Finally, in the GetTest2, we

have a post request, which gives us a return of the same TestObject type.

Using PostJsonAsync saves even more time, as you do not need to convert

anything, establish many variables, and do other tedious tasks.

Probably the biggest downfall of this is the fact that you cannot set

headers for each request. So, you would either have to construct separate

http clients and add different default headers or simply send all the

headers for all the request. In our example, we do have a default header,

which comes back with our Json-based requests. You can find this in

the OnInitializedAsync override. Furthermore, it may be a good idea to

construct one global http client or several with different header sets. If you

decide to do this in a .NET standard class library, you will need to declare

using statement with namespace – Microsoft.AspNetCore.Components.

�HTTP client manipulations
Now that we know the simple and efficient way, we will take a look at

another option. This is useful if you need to check statuses on response,

use body of types other than Application/JSON, or if you need to deal with

cookies and custom headers for each request.

Listing 5-11.  Complex request page

@page "/complexrequestpage"

@inject HttpClient http

<p><button @onclick="@(async () => await GetTest1())">get test

with object</button></p>

<p><button @onclick="@(async () => await GetTest2())">post

test</button></p>

Chapter 5 Blazor hosted

85

<p>@tobj.a</p>

<p>@tobj.b</p>

<p>@tobj.c</p>

@code {

 �BlazorApp1.Shared.TestObject tobj = new BlazorApp1.Shared.

TestObject();

 async Task GetTest1()

 {

 �tobj = await http.GetJsonAsync<BlazorApp1.Shared.

TestObject>("api/test2");

 }

 async Task GetTest2()

 {

 �var msg = new HttpRequestMessage(HttpMethod.Post,

"api/test4");

 msg.Headers.Add("headervalue", "tst");

 var formdt = new MultipartFormDataContent();

 formdt.Add(new StringContent(tobj.a.ToString()), "a");

 formdt.Add(new StringContent(tobj.b), "b");

 formdt.Add(new StringContent(tobj.c.ToString()), "c");

 msg.Content = formdt;

 var resp = await http.SendAsync(msg);

 if (resp.IsSuccessStatusCode)

 {

 �var result = System.Json.JsonObject.Parse(await resp.

Content.ReadAsStringAsync());

 tobj.a = result["a"];

 tobj.b = result["b"];

Chapter 5 Blazor hosted

86

 tobj.c = result["c"];

 }

 }

}

Our code (see Listing 5-11) in this case provides two methods; the

first one, GetTest1, simply retrieves an object for us to test with using the

simple option of doing it. The next one, GetTest2, is where everything

gets interesting. In this case, we will be using SendAsync method in

the HttpClient which requires us to supply a request message. Initially,

you construct the request message by providing the http method and

the route for the message. If you need to call on third-party API, simply

use the full url. After the initial construction, we can add a header for

this specific request. The interesting part here is the content; you can

choose between StreamContent, StringContent, ByteArrayContent,

FormUrlEncodedContent, and MultipartFormDataContent. In this case,

we will be using form-data content, which can contain key/value pairs of

any other content types. This is particularly useful if you need to upload

files, where you would use either stream or byte array. The content then is

simply assigned to the Content property in the message. After we have all

that, we can send the request and get a response message. In the response

message, you get lots of things – status, content, headers, and more. In this

case, we test out a built-in property, IsSuccessStatusCode, which checks for

response status being 200. If that succeeds, we then get to the content and

read it as string. Afterward, we need to turn it into some object, and as you

can already see with the GetJsonAsync or PostJsonAsync, this would be a

lot easier. In the end, if you want something quick and simple, you would

use the JSON-based way, and if you want something more thorough, you

would take the SendAsync route.

Chapter 5 Blazor hosted

87

�Example
This example will cover pretty much all that you have learned previously,

including, of course, API calls. You may call it a store management system,

where we will be able to create a user, create a product, remove a product,

and then create a purchase from the list of buyers and products.

As usual with Blazor hosted projects, we first want to set up our

back-end part (see Figure 5-13). Alongside that, we will establish the

shared models as they are used in the controllers.

Listing 5-12.  Buyer model

namespace BlazorApp1.Shared

{

 public class BuyerModel

 {

 public string id { get; set; }

Figure 5-13.  Web api and shared library of the example project

Chapter 5 Blazor hosted

88

 public string name { get; set; }

 public decimal totalspent { get; set; }

 }

}

Listing 5-13.  Product model

namespace BlazorApp1.Shared

{

 public class ProductModel

 {

 public string id { get; set; }

 public string name { get; set; }

 public string description { get; set; }

 public double value { get; set; }

 public bool available { get; set; }

 }

}

Listing 5-14.  Purchase model

using System;

using System.Collections.Generic;

namespace BlazorApp1.Shared

{

 public class PurchaseModel

 {

 public string id { get; set; }

 public DateTime datecreated { get; set; }

Chapter 5 Blazor hosted

89

 public List<string> products { get; set; }

 public string buyer { get; set; }

 }

}

Before anything else, we need to establish our models which will be

shared between client and server parts. First, we have our buyer model

(Listing 5-12) which holds id, name, and total spent for the buyer. Second

model is for the product (Listing 5-13), which is quite basic as well; the

important part here is the available variable, since we want to be able

to delete the product, but statistics will still depend on that. The more

complicated one is the Purchase (Listing 5-14) model; here we have a list of

products that were bought on that purchase, but they are stored as strings

rather than full objects. You should always store it like that, especially in

the database; otherwise, it can become very inefficient.

Listing 5-15.  Fake database

using System.Collections.Generic;

namespace BlazorApp1.Server

{

 public class FakeDatabase

 {

 �public static List<Shared.BuyerModel> buyers = new

List<Shared.BuyerModel>();

 �public static List<Shared.ProductModel> products = new

List<Shared.ProductModel>();

 �public static List<Shared.PurchaseModel> purchases =

new List<Shared.PurchaseModel>();

 }

}

Chapter 5 Blazor hosted

90

Since we are learning Blazor, not database interactions, we have a

simple mock database (Listing 5-15) setup which is basically just three

static list variables, containing three different models.

Listing 5-16.  Buyer controller

using System.Collections.Generic;

using System.Linq;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Mvc;

namespace BlazorApp1.Server.Controllers

{

 public class BuyerController : Controller

 {

 [Route("api/getbuyerlist")]

 public Task<List<string>> GetAllBuyers()

 {

 var templist = new List<string>();

 foreach (var item in FakeDatabase.buyers)

 {

 templist.Add(item.id);

 }

 return Task.FromResult(templist);

 }

 [Route("api/getbuyerdetails")]

 �public Task<Shared.BuyerModel>

GetDetailsForSingleBuyer(string id)

 {

 �return Task.FromResult(FakeDatabase.buyers.Where

(x => x.id == id).ToArray()[0]);

 }

Chapter 5 Blazor hosted

91

 [Route("api/createbuyer")]

 �public Task<bool> CreateBuyer([FromBody]Shared.

BuyerModel buyer)

 {

 try

 {

 FakeDatabase.buyers.Add(buyer);

 return Task.FromResult(true);

 }

 catch

 {

 return Task.FromResult(false);

 }

 }

 }

}

The first controller (Listing 5-16) is all about the buyer; we only have

three routes here. The first one will get the list of buyers, and the second

one will get details for items. The reason we separate those two is because

most of the time you will want to display only a set of records. Of course,

there are other ways to do it; you may also limit and skip directly in

database, but this is one of the more efficient way to do it. Finally, we have

a route that allows us to create a buyer. Notice how it takes a model from

the request body and then simply inserts it into the database.

Listing 5-17.  Product controller

using System.Collections.Generic;

using System.Linq;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Mvc;

Chapter 5 Blazor hosted

92

namespace BlazorApp1.Server.Controllers

{

 public class ProductController : Controller

 {

 [Route("api/getproductlist")]

 public Task<List<string>> GetAllproducts()

 {

 var templist = new List<string>();

 foreach (var item in FakeDatabase.products)

 {

 if (item.available)

 {

 templist.Add(item.id);

 }

 }

 return Task.FromResult(templist);

 }

 [Route("api/getproductdetails")]

 �public Task<Shared.ProductModel> GetDetailsForSingle

Product(string id)

 {

 �return Task.FromResult(FakeDatabase.products.

Where(x => x.id == id).ToArray()[0]);

 }

 [Route("api/createproduct")]

 �public Task<bool> CreateProduct([FromBody]Shared.

ProductModel product)

 {

Chapter 5 Blazor hosted

93

 try

 {

 FakeDatabase.products.Add(product);

 return Task.FromResult(true);

 }

 catch

 {

 return Task.FromResult(false);

 }

 }

 [Route("api/removeproduct")]

 public Task<bool> CreateProduct(string id)

 {

 try

 {

 �FakeDatabase.products.Find(x => x.id == id).

available = false;

 return Task.FromResult(true);

 }

 catch

 {

 return Task.FromResult(false);

 }

 }

 }

}

The products controller (Listing 5-17) will be a bit different from the

buyers one. We do have the same system for retrieving and inserting

records, but with that, we allow for removing a product. As mentioned

previously, we do not actually delete the product, we simply set it as

Chapter 5 Blazor hosted

94

unavailable. This is always a good practice when you have statistics or

other items that rely on some particular dataset like product in this case.

Listing 5-18.  Purchase controller

using System.Collections.Generic;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Mvc;

namespace BlazorApp1.Server.Controllers

{

 public class PurchaseController : Controller

 {

 [Route("api/getpurchaselist")]

 �public Task<List<Shared.PurchaseModel>>

GetAllPurchases()

 {

 return Task.FromResult(FakeDatabase.purchases);

 }

 [Route("api/createpurchase")]

 �public Task<bool> CreatePurchase([FromBody]Shared.

PurchaseModel purchase)

 {

 try

 {

 FakeDatabase.purchases.Add(purchase);

 return Task.FromResult(true);

 }

 catch

 {

 return Task.FromResult(false);

 }

Chapter 5 Blazor hosted

95

 }

 }

}

Our final controller is for purchases, where we have something a bit

more simplified. Instead of going through id retrieval and details retrieval

separately, this time we just get the whole “database” at once. This

approach would be fine if you only expect 20–30 records, but once you

go into hundreds, it will not only be a waste of your resources, but it will

slow down your user experience which may be even worse than wasting

resources.

Listing 5-19.  Buyer page

@page "/createbuyerpage"

@using datamodels = BlazorApp1.Shared;

@inject HttpClient http

@inject IJSRuntime js

<p>name</p>

<p><input @bind="@currentbuyer.name"></p>

<p><button @onclick="@(async () => await Create())">

Create</button></p>

@code {

 �datamodels.BuyerModel currentbuyer = new datamodels.

BuyerModel() { id = Guid.NewGuid().ToString() } ;

 async Task Create()

 {

 �if (await http.PostJsonAsync<bool>("/api/

createbuyer",currentbuyer))

Chapter 5 Blazor hosted

96

 {

 �currentbuyer = new datamodels.BuyerModel(){ id =

Guid.NewGuid().ToString() };

 }

 else

 {

 �await js.InvokeAsync<object>("alert", "Something

went wrong");

 }

 }

}

We will begin with the client part from the create buyer page. This

page is the most basic one out of all of them. We have to understand the

client part has a folder shared for layouts, but there is also a library named

Shared, so to solve the conflict, the using statement is used to assign the

namespace to a variable. In the code section, we simply declare a variable

currentbuyer and bind its properties to appropriate input fields. With that,

the insertion system becomes quite simple, we just use PostJsonAsync

and check if it was inserted, and if it was, then we simply re-assign

currentbuyer variable with an empty construct.

Listing 5-20.  Product page

@page "/createproductpage"

@using datamodels = BlazorApp1.Shared;

@inject HttpClient http

@inject IJSRuntime js

<p>name</p>

<p><input @bind="currentproduct.name"></p>

<p>description</p>

<p><input @bind="currentproduct.description"></p>

Chapter 5 Blazor hosted

97

<p>value</p>

<p><input @bind="currentproduct.value"></p>

<p><button @onclick="@(async () => await

SubmitProduct())">Submit</button></p>

<p>----</p>

<p>Products</p>

@if (products != null)

{

 @foreach (var item in products)

 {

 �<BlazorApp1.Client.Components.ProductComponent

@key="@item" id="@item" OnDelete="Remove">

</BlazorApp1.Client.Components.ProductComponent>

 }

}

@code {

 �datamodels.ProductModel currentproduct = new datamodels.

ProductModel() { id = Guid.NewGuid().ToString(), available

= true };

 List<string> products;

 protected override async Task OnInitializedAsync()

 {

 �products = await http.GetJsonAsync<List<string>>("/api/

getproductlist");

 }

 async Task SubmitProduct()

 {

Chapter 5 Blazor hosted

98

 try

 {

 �if (await http.PostJsonAsync<bool>("/api/

createproduct", currentproduct))

 {

 �currentproduct = new datamodels.ProductModel()

{ id = Guid.NewGuid().ToString(), available =

true };

 }

 else

 {

 �await js.InvokeAsync<object>("alert",

"Something went wrong");

 }

 }

 catch (Exception e)

 {

 await js.InvokeAsync<object>("alert", e.Message);

 }

 }

 async void Remove(string id)

 {

 �if (await http.GetJsonAsync<bool>("/api/

removeproduct?id=" + id))

 {

 products.Remove(id);

 }

 }

}

Chapter 5 Blazor hosted

99

Listing 5-20 shows the contents of CreateProductPage.razor file, where

we have the interface for creating a new product.

Listing 5-21.  Product component

@using datamodels = BlazorApp1.Shared;

@inject HttpClient http

@if (product != null)

{

 <p>id: @product.id</p>

 <p>title: @product.name</p>

 <p>description: @product.description</p>

 <p>value: @product.value</p>

 <p><button @onclick="@delete">Delete</button></p>

}

@code {

 [Parameter]

 public string id { get; set; }

 [Parameter]

 public EventCallback<string> OnDelete { get; set; }

 datamodels.ProductModel product;

 protected override async Task OnParametersSetAsync()

 {

 �product = await http.GetJsonAsync<datamodels.

ProductModel>("/api/getproductdetails?id=" + id);

 }

 async void delete()

 {

 await OnDelete.InvokeAsync(id);

 }

}

Chapter 5 Blazor hosted

100

Our product create page is where things become a lot more interesting

and at the same time a lot more complex. Let us start with the creation

part, which is very similar to what we have in product create page. It is

similar for a reason; this is a very efficient way to do it, and if you have

similar tasks like that, you should keep them almost identical so that

you could simply copy and paste it and change the names of variables

accordingly. In the page (Listing 5-20), we simply create a variable for our

product model and bind its properties to the inputs. After that, we simply

use PostJsonAsync which inserts our new product.

The more interesting part of this arrangement is the list output of the

products. We display each product as a component generated in a for loop.

The page (Listing 5-20) retrieves our product list on being initialized and

sets it to a list of strings variable. Then, foreach loop creates a component

using each one of the id values and passes them to the component.

The component (Listing 5-21) takes that id and retrieves the details for

product; in this case, it does that whenever a parameter is set. The removal

of the product is a more complex feature, as we want to update the list after

it was removed. Therefore, in the component (Listing 5-21) we have an

event callback declared, which will have an argument holding the id. The

event is set in the page (Listing 5-20) where we simply take the id argument

and remove the appropriate product.

Listing 5-22.  Purchase page

@page "/createpurchasepage"

@using datamodels = BlazorApp1.Shared;

@inject HttpClient http

 <div style="float:left;width:33%;">

 @if (buyers.Count != 0)

 {

Chapter 5 Blazor hosted

101

 @foreach (var item in buyers)

 {

 �<BlazorApp1.Client.Components.BuyerForPurchase

PageComponent id="@item" OnSelected="Buyer

Checkselected"></BlazorApp1.Client.Components.

BuyerForPurchasePageComponent>

 }

 }

 else

 {

 <p>No buyers found</p>

 }

 �<p><button @onclick="@(async () => await

RefreshBuyers())">Refresh buyers</button></p>

 </div>

 <div style="float:left;width:33%;">

 @if (products.Count != 0)

 {

 @foreach (var item in products)

 {

 �<BlazorApp1.Client.Components.

ProductForPurchasePageComponent id="@item"

OnSelected="ProductCheckselected">

</BlazorApp1.Client.Components.ProductFor

PurchasePageComponent>

 }

 }

Chapter 5 Blazor hosted

102

 else

 {

 <p>No products found</p>

 }

 �<p><button @onclick="@(async () => await

RefreshProducts())">Refresh products</button></p>

 </div>

<div style="float:left;width:33%;">

 <button @onclick="SubmitPurchase">Create purchase</button>

</div>

@code {

 List<string> buyers = new List<string>();

 List<string> products = new List<string>();

 string buyer_selected;

 List<string> products_selected = new List<string>();

 void BuyerCheckselected(KeyValuePair<string,bool> arg)

 {

 buyer_selected = arg.Key;

 }

 void ProductCheckselected(KeyValuePair<string,bool> arg)

 {

 if (arg.Value)

 {

 products_selected.Add(arg.Key);

 }

Chapter 5 Blazor hosted

103

 else

 {

 products_selected.Remove(arg.Key);

 }

 }

 async Task RefreshBuyers()

 {

 �buyers = await http.GetJsonAsync<List<string>>("api/

getbuyerlist");

 }

 async Task RefreshProducts()

 {

 �products = await http.GetJsonAsync<List<string>>("api/

getproductlist");

 }

 async Task SubmitPurchase()

 {

 �var tempobj = new datamodels.PurchaseModel() { id = Guid.

NewGuid().ToString(), datecreated = DateTime.UtcNow,

 �buyer = buyer_selected, products = products_selected

 };

 ;

 try

 {

 �if (await http.PostJsonAsync<bool>("/api/

createpurchase", tempobj))

 {

 }

Chapter 5 Blazor hosted

104

 else

 {

 }

 }

 catch (Exception e)

 {

 }

 }

}

Listing 5-22 shows the contents of CreatePurchasePage.razor, which

has all the user interface for creating a purchase.

Listing 5-23.  (BuyerForPurchaseComponent.razor)

@using datamodels = BlazorApp1.Shared;

@inject HttpClient http

@if (buyer != null)

{

 �<div style="float:left;width:100%;background-color:

@selectioncolor">

 <div style="float:left;width:25%;">

 <p>@buyer.id</p>

 </div>

 <div style="float:left;width:25%;">

 <p>@buyer.name</p>

 </div>

 <div style="float:left;width:25%;">

 <p>@buyer.totalspent</p>

 </div>

Chapter 5 Blazor hosted

105

 <div style="float:left;width:25%;">

 �<p><button @onclick="@(async () => await

ToggleSelection())">select</button></p>

 </div>

 </div>

}

@code {

 [Parameter]

 public string id { get; set; }

 [Parameter]

 �public EventCallback<KeyValuePair<string,bool>> OnSelected

{ get; set; }

 string selectioncolor = "#ffd800";

 public bool is_selected { get; set; }

 datamodels.BuyerModel buyer;

 protected override async Task OnParametersSetAsync()

 {

 �buyer = await http.GetJsonAsync<datamodels.BuyerModel>

("/api/getbuyerdetails?id=" + id.ToString());

 }

 async Task ToggleSelection()

 {

 is_selected = is_selected ? false : true;

 selectioncolor = is_selected ? "#4cff00" : "#ffd800";

 �await OnSelected.InvokeAsync(new KeyValuePair<string,

bool>(id,is_selected));

 }

}

Chapter 5 Blazor hosted

106

The “buyer for purchase” component (Listing 5-23) will be used to

display available buyers in the purchase page.

Listing 5-24.  (ProductForPurchasePageComponent.razor)

@using datamodels = BlazorApp1.Shared;

@inject HttpClient http

@if (product != null)

{

 �<div style="float:left;width:100%;background-color:

@selectioncolor">

 <div style="float:left;width:20%;">

 <p>@product.id</p>

 </div>

 <div style="float:left;width:20%;">

 <p>@product.name</p>

 </div>

 <div style="float:left;width:20%;">

 <p>@product.description</p>

 </div>

 <div style="float:left;width:20%;">

 <p>@product.value</p>

 </div>

 <div style="float:left;width:20%;">

 �<p><button @onclick="@(async () => await

ToggleSelection())">select</button></p>

 </div>

 </div>

}

Chapter 5 Blazor hosted

107

@code {

 [Parameter]

 public string id { get; set; }

 [Parameter]

 �public EventCallback<KeyValuePair<string, bool>> OnSelected

{ get; set; }

 string selectioncolor = "#ffd800";

 public bool is_selected { get; set; }

 datamodels.ProductModel product;

 protected override async Task OnParametersSetAsync()

 {

 �product = await http.GetJsonAsync<datamodels.

ProductModel>("/api/getproductdetails?id=" +

id.ToString());

 }

 async Task ToggleSelection()

 {

 is_selected = is_selected ? false : true;

 selectioncolor = is_selected ? "#4cff00" : "#ffd800";

 �await OnSelected.InvokeAsync(new KeyValuePair<string,

bool>(id, is_selected));

 }

}

Purchase page (Listing 5-22) may come across as simple, but it is

rather complex. What helps us keep it clean are the components, in this

case, one for buyer list items (Listing 5-23) and the other for product list

items (Listing 5-24). First, we declare two list variables in the page, one for

Chapter 5 Blazor hosted

108

buyers and the other for products; the lists are assigned either in method

RefreshBuyers or RefreshProducts accordingly, and in this case, we have

refresh buttons instead of simply fetching data on initialized. For both

lists, we have foreach loops where we generate our components and pass

the id into them; we will get back to the Onselect event later. Both product

(Listing 5-24) and buyer (Listing 5-23) components retrieve their details

according to the id passed and display them in HTML accordingly.

Another important feature of this arrangement is the selection of items.

For that, we have buyer_selected and products_selected variables; as you

can probably guess from this, we only allow one buyer to be selected.

In the buyer component (Listing 5-23), we have several things related

to selection; first we have OnSelected event callback, then is_selected

Boolean, and finally selectioncolor string. The color is used for the

background, and when selected, it changes; the Boolean is not necessary

in this case, but it would be useful if you had to deal with changes more

inside the component. The most important piece of this is the OnSelected

callback, which is invoked in the ToggleSelection. What happens there

is quite simple; we check if the product is selected or not on click and

we switch that state. With that, we invoke the callback passing the id

for product and the new state of selection. The product (Listing 5-24)

component is a very similar case; in fact, the selection in component itself is

identical. The difference is in the set callback method in the page (Listing 5-22),

where we either remove item from the list or insert it. For the buyer, we simply

replace the string if the buyer was selected, not deselected.

Finally, for the submission we have one single method

SubmitPurchase, where we construct new purchase object and add the

details to it alongside that. Afterward, we just need to use PostJsonAsync

to add to our database. One thing to note here is the error handling.

While Json get and post methods are very clean and simple, they lack the

handling of errors. Fortunately for us, c# sharp error handling is quite

detailed and efficient. But a good practice for all calls would be to use the

try catch and then sort through exceptions as you would do with statuses.

Chapter 5 Blazor hosted

109

Listing 5-25.  Buyer component

@using datamodels = BlazorApp1.Shared;

@inject HttpClient http

@if (purchases != null)

{

 @foreach (var item in purchases)

 {

 �<BlazorApp1.Client.Components.PurchaseComponent

id="@item.id"

 �buyer="@item.buyer" datecreated="@item.

datecreated">

 �</BlazorApp1.Client.Components.PurchaseComponent>

 }

}

@code {

 List<datamodels.PurchaseModel> purchases;

 protected override async Task OnInitializedAsync()

 {

 �purchases = await http.GetJsonAsync<List<datamodels.

PurchaseModel>>("/api/getpurchaselist");

 }

}

}

Chapter 5 Blazor hosted

110

Listing 5-26.  Purchase component

@using datamodels = BlazorApp1.Shared;

@inject HttpClient http

<div style="width:300px;">

 <p>id: @id</p>

 <p>created at: @datecreated</p>

 <p>products: </p>

 @{double total = 0;}

 @foreach (var item in products)

 {

 total += item.value;

 <p>id: @item.id</p>

 <p>name: @item.name</p>

 <p>description: @item.description</p>

 <p>value: @item.value</p>

 }

 <p>total: @total</p>

 <p>buyer: @buyer</p>

</div>

@code {

 [Parameter]

 public string id { get; set; }

 [Parameter]

 public DateTime datecreated { get; set; }

 [Parameter]

 public List<string> productsparam { get; set; }

 [Parameter]

 public string buyer { get; set; }

 �List<datamodels.ProductModel> products { get; set; } = new

List<datamodels.ProductModel>();

Chapter 5 Blazor hosted

111

 protected override async Task OnParametersSetAsync()

 {

 foreach (var item in productsparam)

 {

 �products.Add(await http.GetJsonAsync<datamodels.

ProductModel>("/api/getproductdetails?id=" +

id.ToString()));

 }

 }

}

Our final feature simply displays all the purchases, and this once again

requires a component. Our purchase component (Listing 5-26) will take

all the purchase data through the parameters. Do note the parameters will

work perfectly as long as you use them as a component. As we saw in the

example of the previous chapter, page is opened using query string, and it

would not be as simple to convert the list. What we do need to fetch is the

list product details for each purchase, and that is done on parameters set.

The lookup page (Listing 5-25) is even simpler; we only retrieve the list of

purchases and generate components via the foreach loop.

�Summary
At this point, you have seen what each type of Blazor has to offer; you

should now be able to choose what you need for your project. Throughout

these chapters, you have probably noticed that most things covered for one

type will work well in the others too. In the next chapter, we will learn a bit

more about Blazor and explore some additional features and use cases.

Chapter 5 Blazor hosted

113© Taurius Litvinavicius 2019
T. Litvinavicius, Exploring Blazor, https://doi.org/10.1007/978-1-4842-5446-2_6

CHAPTER 6

General Blazor
In the last three chapters, we have covered each type more specifically. In

this chapter, we will look at several things that can be very useful for any

Blazor type.

�Interacting with JavaScript
While Blazor can access many things directly, for some cases you will

still need JavaScript. Fortunately for us, Blazor allows us to interact with

JavaScript in a very simple way. This can be useful to access storage, deal

with files, and access JavaScript libraries.

114

To understand the interactions better, we will use a single project

(Figure 6-1) with three pages, and in those, we will explore JavaScript

interactions, events, and their arguments. The project is a normal client-side

project, which contains three pages: JSinteractionsPage, UIeventargsPage,

and UIeventsPage. The routes for pages are stated according to their names.

�Execute JavaScript Function
JavaScript interaction happens through IJSRuntime interface, which needs

to be injected for a page where you will use it.

Listing 6-1.  JavaScript interactions page

@page "/JSinteractionsPage"

@inject IJSRuntime js

<p>a</p>

<p><input @bind="@a"></p>

Figure 6-1.  The example project layout with pages added

Chapter 6 General Blazor

115

<p>b</p>

<p><input @bind="@b"></p>

<p><button @onclick="@(async () => await TestMethod())">test

</button></p>

<p>@result</p>

@code {

 double a;

 double b;

 double result;

 async Task TestMethod()

 {

 �result = await js.InvokeAsync<double>("TestFunction",

a, b);

 }

}

Listing 6-1 shows the contents of JSinteractionsPage.razor, where we

will try to execute a JavaScript function.

Listing 6-2.  Test function

<script>

 function TestFunction(a, b) {

 return a * b;

 }

</script>

The JavaScript function is declared in index.html (Listing 6-2) found

in the root folder (wwwroot). It simply takes two variables and multiplies

them. In our JSinteractionsPage (Listing 6-1), we have two input tags

bound to two double variables, a result variable, and a button which on

click/tap will execute our method, which in turn will execute the function

in JavaScript. For that to happen, we first inject the IJSRuntime. After that,

Chapter 6 General Blazor

116

we simply use the one and only method it has, InvokeAsync, which takes

the name of the JavaScript function as its first argument, and the rest of the

parameters will be the parameters passed in the JavaScript function. Do

note that you can also create an object array for passing the parameters

and always mind the return type of JavaScript function, so it is correct.

Everything is quite simple, and there is nothing to worry if you need to

access your old JavaScript libraries or the ones that may not be widely

available for Blazor.

�UI Events
HTML elements have several events, some generic and some tag specific.

The good news is that you can use all of them directly in Blazor with no

JavaScript interactions.

Listing 6-3.  User interface events page

@page "/UIeventsPage"

<textarea @onpaste="@OnpasteTest"></textarea>

<video @onpause="@OnPauseTest" ></video>

<p>@output</p>

@code {

 string output;

 void OnpasteTest()

 {

 output = "text pasted";

 }

 void OnPauseTest()

 {

 output = "Don't give up watching";

 }

}

Chapter 6 General Blazor

117

You have already used one of them, onclick, but now let us take a look

at some more. Here (Listing 6-3) we have onpaste event for text area, which

will occur once some text is pasted. As you can see, we execute a simple

method which simply assigns a value to the output variable. The second one

is video tag event specific, onpause; this one would occur once the video is

paused. The important thing to remember is that a lot of events are element

specific; therefore, you have to know which event belongs to which element.

�UI Arguments
Every event has an argument and there is a special way to access it in

Blazor. Arguments can be very useful to check new value, changes that

occur, or get some other current data for UI element. Just remember,

arguments are specific to events and events are specific to elements.

Listing 6-4.  User interface arguments page

@page "/UIeventargsPage"

<p><input @onchange="@(async (changeargs) => await TestChange

Arguments(changeargs))" /></p>

<p><div style="width:300px;height:300px;border:3px solid

#ff0000" type="checkbox" @onmousemove="@(async (changeargs) =>

await TestMouseArguments(changeargs))" ></div></p>

<p>@output</p>

@code {

 string output;

 Task TestChangeArguments(ChangeEventArgs e)

 {

 output = (string)e.Value;

 return Task.CompletedTask;

 }

Chapter 6 General Blazor

118

 Task TestMouseArguments(MouseEventArgs e)

 {

 output = "x: " + e.ScreenX + "; y: " + e.ScreenY;

 return Task.CompletedTask;

 }

}

Our example (Listing 6-4) has two events with two different arguments,

so we will start with the first one – UIChangeEventArgs. This particular one

holds very little information, but the most important piece is the change

value. The argument is declared in the TestChangeArguments Task, in

it we simply access the parameter e and take the value (type object) and

set it to the output variable. The more difficult part is the execution of it.

You need to do it through lambda expression, and it is best done using

an asynchronous way as shown in the input. The next one is a bit more

exciting – UIMouseEventArgs; this one gives you information about your

mouse. You will get position, button clicked, and some other data. We are

executing this one in our div element using onmousemove event.

Do mind that the event will only occur when you are hovering inside
the div element.

As you can see, this can be very useful in dynamic calculations or some

other advanced UI. For example, drawing applications or even drag-and-

drop functionality can be established using these arguments and the

associated events.

�Local Storage
For the storage section, we will use one single project and explore some

possible options in it.

Chapter 6 General Blazor

119

The project (Figure 6-2) is a basic template with unwanted files

removed and TestObject class added to it; we will explore that one later.

The whole code is in the Index.razor; therefore, you will not need to create

any other additional files.

�Where to Store?
This question will surely be asked in one of your projects and most likely

most of your projects. Of course, your first option is simply to store your

values in a static variable defined in a class. While that may not be a viable

long-term solution, it is the most efficient one and it is the best option if

you simply want to move variables from page to page. It would apply for

things like authentication tokens, color scheme, and other settings. The

other options are more traditional and more permanent, that is, store data

in local storage or session storage. Local is great for things like “remember

me” or session-free settings; on the other hand, session will be destroyed

once the tab is closed which is very similar to just storing in variables and

makes this option rather pointless.

Figure 6-2.  Basic template of project

Chapter 6 General Blazor

120

Of course, for modern applications you will most likely need to store

the data on the server at some point, as that would be the safest as well as

the most convenient way to do things. But as long as you do not need to

preserve the data, use one of these options and try to save some resources

of your server.

�Store Text
If you do decide that you need something more permanent, this is what

you will need to do.

Listing 6-5.  Javascript interactions for local storage access

@page "/"

@inject IJSRuntime js

<p>test key</p>

<p><input @bind="@testkey"></p>

<p>test value</p>

<p><input @bind="@testvalue"></p>

<p><button @onclick="@(async () => await AddStringToSession

Storage())">Insert to session</button></p>

<p><button @onclick="@(async () => await AddStringToLocal

Storage())">Insert to local</button></p>

<p>key to retrieve</p>

<p><input @bind="@testkey_forget"></p>

<p><button @onclick="@(async () => await GetStringFromSession

Storage())">Get from session</button></p>

<p><button @onclick="@(async () => await GetStringFromLocal

Storage())">Get from local</button></p>

<p>@output</p>

Chapter 6 General Blazor

121

@code {

 string testkey;

 string testvalue;

 string testkey_forget;

 string output;

 async Task AddStringToLocalStorage()

 {

 �await js.InvokeAsync<object>("localStorage.setItem",

testkey, testvalue);

 }

 async Task GetStringFromLocalStorage()

 {

 �output = await js.InvokeAsync<string>("localStorage.

getItem", testkey_forget);

 }

 async Task AddStringToSessionStorage()

 {

 �await js.InvokeAsync<object>("sessionStorage.setItem",

testkey, testvalue);

 }

 async Task GetStringFromSessionStorage()

 {

 �output = await js.InvokeAsync<string>("sessionStorage.

getItem", testkey_forget);

 }

The code (Listing 6-5) in the index shows some options on how you

would interact with JavaScript and set or get your variables. First, let us

look at the methods. As you can see, they are quite basic and we do not

Chapter 6 General Blazor

122

need to write any JavaScript as the functions are already included in either

local or session storage. We have some input variables like testkey and

testvalue which will be the values used for setting your variables. Then, we

have testkey_forget, which is the value you will be retrieving, and finally,

we have the output string which will be assigned once a specific value is

retrieved. For handling errors, you can either use try or catch in C#, or

for something more accurate, you would create your own functions in

JavaScript.

�Store Other Types
When you have a string, you can simply store it as is, and if you have an

int, you simply convert it to a string. However, when you have some more

complex object, it becomes more difficult. You basically have two ways to

do it; you can either serialize your object to json or do something more

advanced which is something we will look at.

Listing 6-6.  Binary formatter in blazor component (page)

@page "/"

@inject IJSRuntime js

@using System.Runtime.Serialization.Formatters.Binary;

<p>key to retrieve</p>

<p><input @bind="@testkey_forget"></p>

<p><button @onclick="@(async () => await GetObjectFromLocal

Storage())">Get object from local</button></p>

<p>@output</p>

<p>Insert object</p>

<p>key</p>

<p><input @bind="@testkey_forobject"></p>

Chapter 6 General Blazor

123

<p>id</p>

<p><input @bind="@ObjectToInsert.id"></p>

<p>value</p>

<p><input @bind="@ObjectToInsert.value"></p>

<p><button @onclick="@(async () => await AddObjectToLocal

Storage())">Insert object to local</button></p>

@code {

 string testkey_forget;

 string testkey_forobject;

 TestObject ObjectToInsert = new TestObject();

 string output;

 async Task AddObjectToLocalStorage()

 {

 BinaryFormatter formatter = new BinaryFormatter();

 var tempstream = new System.IO.MemoryStream();

 formatter.Serialize(tempstream, ObjectToInsert);

 �string base64 = Convert.ToBase64String(tempstream.

ToArray());

 �await js.InvokeAsync<object>("localStorage.setItem",

testkey_forobject, base64);

 }

 async Task GetObjectFromLocalStorage()

 {

 �string base64 = await js.InvokeAsync<string>("local

Storage.getItem", testkey_forget);

 output = base64;

 BinaryFormatter formatter = new BinaryFormatter();

Chapter 6 General Blazor

124

 �var tempstream = new System.IO.MemoryStream(Convert.

FromBase64String(base64));

 �ObjectToInsert = (TestObject)formatter.

Deserialize(tempstream);

 }

}

The idea here (Listing 6-6) is to store raw object of c#, but you still

need it to be a string. To accomplish that, we will convert the object

to base64 using several steps. First, we need to serialize the object

to a stream (in method AddObjectToLocalStorage); for that, we use

BinaryFormatter (namespace System.Runtime.Serialization.Formatters.

Binary). If you have never used binary formatter before, you should

remember it, and it might change the way you develop applications.

Getting back to the code, we establish a temporary stream to which we

will serialize our object. After that, we simply pass the stream and the

object to parameters of Serialize method in the formatter. Remember to

use MemoryStream as it exposed the ToArray method, which will give

the byte array of the stream. Finally, we simply convert the byte array to a

base64 string and insert that to the local storage.

To retrieve your data, we will also need to use BinaryFormatter. In the

GetObjectFromLocalStorage, we first retrieve base64 value from storage,

which is then converted to a byte array and put in a stream. The stream

is deserialized using Deserialize method, and the output is cast to your

desired object type. In between, we output the base64 string just to see

that it really works, and finally we assign that to the initial ObjectToInsert

variable to see the output.

Chapter 6 General Blazor

125

�Pick and Save Files
File handling is a truly troublesome part of Blazor. While generating/

downloading files is actually quite easy, picking one is a different story.

Unfortunately, in its early versions, Blazor does not support any direct

access to a file stream; therefore, the only way to use a file is by loading it to

the memory, which in turn presents another problem, and that is the limits

of the browser. We will take a look at a single example which picks a file

and then saves it.

Figure 6-3.  Example client-side project, default template

Notice that in this case (Figure 6-3) we will be using both index.html

and Index.razor.

Listing 6-7.  Index.html with javascript

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <meta name="viewport" content="width=device-width">

Chapter 6 General Blazor

126

 <title>WebApplication1</title>

 <base href="/">

 �<link href="css/bootstrap/bootstrap.min.css"

rel="stylesheet">

 <link href="css/site.css" rel="stylesheet">

</head>

<body>

 <app>Loading...</app>

 <script src="_framework/blazor.webassembly.js"></script>

 <script>

 var FileManager = {

 downloadfile: function(name, bt64) {

 var downloadlink = document.createElement('a');

 downloadlink.download = name;

 �downloadlink.href = "data:application/octet-stream;

base64," + bt64;

 document.body.appendChild(downloadlink);

 downloadlink.click();

 document.body.removeChild(downloadlink);

 },

 filedata: [],

 readeron: true,

 openreading: function () {

 document.getElementById("fileinput").click();

 return true;

 },

 startreading: function () {

 this.readeron = true;

 var reader = new FileReader();

 reader.onloadend = function () {

Chapter 6 General Blazor

127

 try {

 var dtw = new DataView(reader.result);

 for (var i = 0; i < dtw.byteLength; i++) {

 FileManager.filedata.push(dtw.getInt8(i));

 }

 } catch (e) {

 alert(e);

 }

 this.readeron = false;

 };

 �reader.readAsArrayBuffer(document.

getElementById("fileinput").files[0]);

 },

 getfile: function () {

 return FileManager.filedata;

 }

};

 </script>

</body>

</html>

Listing 6-8.  File reader in component

@page "/"

@using System.Linq;

@inject IJSRuntime js

<button @onclick="@(async () => await getfile())">get file

</button>

Chapter 6 General Blazor

128

<input id="fileinput" type="file" @onchange="@(async () =>

await OpenFile())">

<button @onclick="@(async () => await

DownloadFile())">Download</button>

<p>@statustext</p>

<p>@statustext1</p>

@code {

 byte[] selectedfilebytes;

 string statustext;

 string statustext1;

 async Task getfile()

 {

 �await js.InvokeAsync<object>("FileManager.

openreading");

 }

 async Task OpenFile()

 {

 try

 {

 statustext = "reading";

 �await js.InvokeAsync<object>("FileManager.

startreading");

 await Task.Delay(7000);

 �int[] ob = await js.InvokeAsync<int[]>("FileManager.

getfile");

 �selectedfilebytes = ob.Select(x => (byte)x).

ToArray();

 statustext1 = "done";

 }

 catch (Exception e)

Chapter 6 General Blazor

129

 {

 statustext = e.Message + "\n\n" + e.InnerException;

 }

 }

 async Task DownloadFile()

 {

 �string base64 = Convert.ToBase64String(selected

filebytes);

 �await js.InvokeAsync<object>("FileManager.

downloadfile", "testfile_" + DateTime.UtcNow.

ToFileTimeUtc().ToString() + ".avi",base64);

 }

}

�Pick File
As mentioned before, picking a file is not a simple task and there are limits

to it. But there are ways to get at least an image file into the memory in the

C# part. The idea is to read the file stream in JavaScript, either read it as

base64 or as an array of integers. We will go with integer array in this case,

but the process for base64 would be very similar. The idea is to retrieve the

string and convert it to byte array. The same goes for int array, with some

differences in conversion.

First, we have some JavaScript code (Listing 6-7) in the index.html. We

create a variable FileManager which will hold our functions. In the Index.

razor (Listing 6-8), we have a fileinput with an id. We also have a button

which basically triggers the click of the fileinput, and once the contents of

fileinput change, another method is executed which then uses JSinterop to

start reading the file. The file stream is read by the function startreading in

the JavaScript part. We also have a JavaScript variable in the FileManager,

Chapter 6 General Blazor

130

which is the part where we will set array of integers to be retrieved. To

create that array, we first need to establish a data view from the result of

the reader and loop through each element adding them to this basic array

of integers. Getting back to the C# part (Listing 6-8), in this example after

the reader starts, we delay execution for 7 seconds, so that the reader

would finish and our array would be ready. After that, we retrieve the array

and convert it to byte array using a very simple Linq arrangement. If you

have never worked with bytes before, this may seem a bit confusing; how

can an integer become a byte? A good way to clarify that would be for

you to create a console application and break to check some byte array

variable. In the byte array display, you will notice that it is actually an array

of integers, and that is how our conversion works in this case.

As you can see, this is both a limited and a very inefficient way to deal

with files. But having said that, the point is not to be efficient but rather

not to use server resources. Businesses pay for server resources, not for

browser resources, and that is where you make a difference. Just a simple

image conversion can save you lots of money.

�Save File
Saving a file may seem to be more of an unusual task, but it is a lot simpler

and works better than picking one. Our JavaScript FileManager variable

holds a function downloadfile, which takes the name of the file and the

base64 string as the data of the file. After that, it is all quite simple; an

element is created and a data link to href is added. At this point, you only

need to initiate a click and the file will be downloaded. In the C# part, we

DownloadFile method where we convert the byte array to base64 string

and execute JavaScript function which does the downloading.

Chapter 6 General Blazor

131

�Summary
As you can see, Blazor is truly capable of doing anything you need to do.

While some parts may be a bit unorthodox at this point, they still do the

job, and in the future, we can expect them to be improved. Now that you

have learned about Blazor, it is time to practice, and the following chapters

will help you do just that.

Chapter 6 General Blazor

133© Taurius Litvinavicius 2019
T. Litvinavicius, Exploring Blazor, https://doi.org/10.1007/978-1-4842-5446-2_7

CHAPTER 7

Practice Tasks
for Server-side
Now that you are done with learning, you need to practice. We will start

with two tasks for server-side Blazor and explore its use case further.

�Task 1
The first task will be a simple project that only takes the data from user

interface and inserts it into a database, or retrieves and displays the data.

This is what server-side is really useful for, when you work with simple

forms and you need quick access to the server.

�Description
Create a product management dashboard.

The user should be able to

•	 Insert a product

•	 Retrieve product list

•	 Delete a product

134

Product data

•	 Id

•	 Title

•	 Seller’s name

•	 Description

•	 Value

The product list items should also contain a button or other element

which when clicked would delete the element.

�Resources
Since we are not learning databases here, we need to create a fake one.

This way, you can focus on Blazor-related matters only.

Listing 7-1.  Fake database

using System.Collections.Generic;

namespace BlazorApp1

{

 public class FakeDatabase

 {

 �public static List<your product model> products = new

List<DataModels.ProductModel>();

 }

}

Create .cs file according to the code provided (Listing 7-1). This will be

your database, where you will insert your product object, retrieve them,

and delete them.

Chapter 7 Practice Tasks for Server-side

135

�Solution
As usual, there are many solutions to this task, but we will still take a look

at one possibility and explore it as much as possible. We will start with the

general setup of the project and then move to services and then to pages.

Figure 7-1.  The solution project

As you can see (Figure 7-1), the project has all most default

contents removed, but we still leave Index.razor, MainLayout.razor, and

NavMenu.razor. First, the Shared folder contains our main layout, as well

as the nav menu where we will have navigation setup for our two pages.

Chapter 7 Practice Tasks for Server-side

136

We also have the index page, which will only contain our navigation links.

With that, we created a couple of pages for creating new product and

retrieving the list. For the logic part, we have Data and DataModels folders.

In the DataModels, we will have the model for the product and Data will

contain our logic. This is a good way to lay out your project; this way, you

know exactly where to file for their purposes.

Listing 7-2.  Product model

using System;

namespace BlazorApp1.DataModels

{

 public class ProductModel

 {

 public Guid id { get; set; }

 public string title { get; set; }

 public string sellername { get; set; }

 public string description { get; set; }

 public decimal value { get; set; }

 }

}

The code (Listing 7-2) shows the contents of ProductModel.cs file

found in DataModels folder.

Listing 7-3.  Product management service

using System;

using System.Collections.Generic;

using System.Linq;

using System.Threading.Tasks;

Chapter 7 Practice Tasks for Server-side

137

namespace BlazorApp1.Data

{

 public class ProductManagementService

 {

 �public Task<bool> CreateProductAsync(DataModels.

ProductModel pmodel)

 {

 try

 {

 FakeDatabase.products.Add(pmodel);

 return Task.FromResult(true);

 }

 catch (Exception)

 {

 return Task.FromResult(false);

 }

 }

 �public Task<List<DataModels.ProductModel>>

GetAllProductsAsync()

 {

 return Task.FromResult(FakeDatabase.products);

 }

 public Task<bool> DeleteProductAsync(Guid id)

 {

 try

 {

 �FakeDatabase.products.Remove(FakeDatabase.

products.Where(x => x.id == id).ToArray()[0]);

 return Task.FromResult(true);

 }

Chapter 7 Practice Tasks for Server-side

138

 catch (Exception)

 {

 return Task.FromResult(false);

 }

 }

 }

}

First, we need to establish the data model for the product. As you

can see, it simply contains all the required properties, including an id of

type Guid. This id needs to be referred to in your FakeDatabase class (see

Listing 7-3). Once we have that set up, we can move on to the logic. We will

only be using one service, kind of like you would have a controller in api.

Except in this case, we have methods instead of http method parameters:

POST (CreateProductAsync), GET (GetAllProductsAsync), and DELETE

(DeleteProductAsync). This way, everything is conveniently placed and

it is easy to find. The first method will simply take our model object as a

parameter and insert it in the list in the FakeDatabase. The second one is

even more basic as it only returns the list. Finally, the last one is a bit more

complex; for you to make it more realistic, we want to pass only the id. The

Remove method in the list type takes the whole object, so in this case, we

have to use a little Linq to find it by id.

Listing 7-4.  Service registry

public void ConfigureServices(IServiceCollection services)

 {

 services.AddRazorPages();

 services.AddServerSideBlazor();

 services.AddSingleton<ProductManagementService>();

 }

Chapter 7 Practice Tasks for Server-side

139

You also have to register (Listing 7-4) your service in the Startup.cs.

Afterward, you can move on to other tasks, although it would be

recommended to just register the service after you have created the code file.

Listing 7-5.  Create product page

@page "/createproductpage"

@inject Data.ProductManagementService productmanagement

<p>title</p>

<p><input @bind="@producttoinsert.title"></p>

<p>seller name</p>

<p><input @bind="@producttoinsert.sellername"></p>

<p>description</p>

<p><textarea @bind="@producttoinsert.description"></p>

<p>value</p>

<p><input @bind="@producttoinsert.value"></p>

<p><button @onclick="@(async () => await

InsertNewProduct())">Insert a product</button></p>

<p>@result</p>

@code {

 string result;

 �DataModels.ProductModel producttoinsert = new

DataModels.ProductModel() { id = Guid.NewGuid() };

 async Task InsertNewProduct()

 {

 �if (await productmanagement.CreateProductAsync(product

toinsert))

 {

 result = "product created";

 producttoinsert = new DataModels.ProductModel();

 }

Chapter 7 Practice Tasks for Server-side

140

 else

 {

 result = "failed to create";

 }

 }

}

The create page (see Listing 7-5) we try to simplify as much as possible

by binding the variables from a constructed object rather than declaring

them separately in the page. But before anything else, we establish a route

for the page and inject the product management service. In the code

section, we have a result string which will simply tell us if the product was

inserted successfully. After that, we declare a product variable, which has

its contents bound to corresponding input fields. InsertNewProduct gets

executed on the click of the button, and it executes CreateProductAsync

then checks the return Boolean. Finally, the method re-assigns the

producttoinsert variable, so that the new product could be inserted.

Listing 7-6.  View products page

@page "/viewproductspage"

@inject Data.ProductManagementService productmanagement

<table>

 <tbody>

 @if (products != null)

 {

 @foreach (var item in products)

 {

 <tr>

 <td>@item.id</td>

 <td>@item.title</td>

Chapter 7 Practice Tasks for Server-side

141

 <td>@item.description</td>

 <td>@item.sellername</td>

 <td>@item.value</td>

 �<td><button @onclick="@(async () => await

Delete(item.id))">Delete</button></td>

 </tr>

 }

 }

 else

 {

 }

 </tbody>

</table>

@code {

 List<DataModels.ProductModel> products;

 protected override async Task OnInitializedAsync()

 {

 �products = await productmanagement.

GetAllProductsAsync();

 }

 async Task Delete(Guid id)

 {

 await productmanagement.DeleteProductAsync(id);

 }

}

For the product display, we have a rather complex page (see Listing 7-6),

but to simplify it, we will be using a table to display our products. The

alternative to that would be using components for each item. As always, we

first declare a route for the page, and alongside that, we have an injection

Chapter 7 Practice Tasks for Server-side

142

for our main service. The code section contains one variable, that is, the list

of products. We retrieve and assign the list once, on the initialization of the

page. Alternatively, you may have chosen to add a refresh button or simply

have a button that fetches data without doing that on initialization. We also

have a Delete method which will delete the product. For the display, we first

check if the list is assigned, and then we loop through each item by using

foreach loop. The items are displayed in table data cells, with the exception

of delete button. For the delete button, we establish an onclick event where

we set our delete method and pass the id for the current item.

Listing 7-7.  Navigation page

<div>

 <ul class="nav flex-column">

 <li class="nav-item px-3">

 <NavLink class="nav-link" href="createproductpage" >

 �<span class="oi oi-plus" aria-

hidden="true">Create product </NavLink>

 <li class="nav-item px-3">

 <NavLink class="nav-link" href="viewproductspage">

 �<span class="oi oi-home" aria-

hidden="true">Manage products

 </NavLink>

</div>

Chapter 7 Practice Tasks for Server-side

143

Listing 7-8.  Index page

@page "/"

<p><NavLink href="">Create product</NavLink></p>

<p><NavLink href="viewproductspage">View products</NavLink></p>

Finally, we have two ways to navigate to our pages. The first and initial

option is to use the links in the index (Listing 7-8), and the second option

is to go through the nav bar (Listing 7-7).

�Task 2
This task will help you focus on component-based development – rather

than working with lots of pages, you will rely on components.

�Description
Create a basketball game tracking application. This particular application

will focus on you using Blazor, but with that, you will need to explore how

and why Blazor server-side would be useful for such task.

Teams A and B are tracked separately; you should be able to register a

statistics item by clicking a single button.

Allow to register

Score 1 pt

Score 2 pt

Score 3 pt

Foul

Rebound

Block

Chapter 7 Practice Tasks for Server-side

144

You do not need to save anything, but do allow for that. Try to establish

methods and structure on how you would save the data for the game.

�Solution
Just like the first task and all the upcoming ones, this will not be the only

solution. But this is one of the more efficient ones. We will explore the

general logic, as well as how you could go further if you actually needed to

save those updates.

Figure 7-2.  Main.razor and TeamComponent.razor

Chapter 7 Practice Tasks for Server-side

145

As you can see, there are only two pages: Main.razor and

TeamComponent.razor. Also, the layout has been completely cleaned and

we only have @body in it.

Listing 7-9.  Point model

using System;

namespace WebApplication1.DataModels

{

 public class PointScoredModel

 {

 public Guid id { get; set; }

 public int value { get; set; }

 }

}

Listing 7-10.  Rebound model

using System;

namespace WebApplication1.DataModels

{

 public class ReboundModel

 {

 public Guid id { get; set; }

 }

}

Chapter 7 Practice Tasks for Server-side

146

Listing 7-11.  Foul model

using System;

namespace WebApplication1.DataModels

{

 public class FoulModel

 {

 public Guid id { get; set; }

 }

}

Listing 7-12.  Block model

using System;

namespace WebApplication1.DataModels

{

 public class BlockModel

 {

 public Guid id { get; set; }

 }

}

As you can see, for the most part, the models are quite straightforward

(see listings 7-9, 7-10, 7-11, 7-12) with the exception of score. Since we

have three types of score (1 pt, 2 pt, 3 pt), we could have three different

models, but that would be inefficient and hard to read, and it would also

present problems when displaying total score for the team. If need be, you

can always expand these models – add time of the game, add quarter, and

add player’s number.

Chapter 7 Practice Tasks for Server-side

147

Listing 7-13.  Main page

<p>Current score:

@{

 int currentscore = 0;

}

@foreach (var item in PointsList)

{

 currentscore += item.value;

}

 <label>@currentscore</label>

 </p>

<p>Total fouls: @FoulList.Count</p>

<p>Total rebounds: @ReboundList.Count</p>

<p>Total blocks: @BlockList.Count</p>

<p><button @onclick="@(() => AddPoint(1))">Add 1 pt</button></p>

<p><button @onclick="@(() => AddPoint(2))">Add 2 pt</button></p>

<p><button @onclick="@(() => AddPoint(3))">Add 3 pt</button></p>

<p><button @onclick="@(() => AddFoul())">Add Foul</button></p>

<p><button @onclick="@(() => AddRebound())">Add rebound

</button></p>

<p><button @onclick="@(() => AddBlock())">Add block</button></p>

@code {

 [Parameter]

 public int team { get; set; } = 1;// A - 1 or B - 2

 [Parameter]

 public Guid gameid { get; set; }

 �List<DataModels.PointScoredModel> PointsList = new

List<DataModels.PointScoredModel>();

 �List<DataModels.FoulModel> FoulList = new List<DataModels.

FoulModel>();

Chapter 7 Practice Tasks for Server-side

148

 �List<DataModels.BlockModel> BlockList = new

List<DataModels.BlockModel>();

 �List<DataModels.ReboundModel> ReboundList = new

List<DataModels.ReboundModel>();

 void AddPoint(int val)

 {

 �PointsList.Add(new DataModels.PointScoredModel { id =

Guid.NewGuid(), value = val });

 }

 void AddFoul()

 {

 �FoulList.Add(new DataModels.FoulModel() { id = Guid.

NewGuid() });

 }

 void AddBlock()

 {

 �BlockList.Add(new DataModels.BlockModel() { id = Guid.

NewGuid() });

 }

 void AddRebound()

 {

 �ReboundList.Add(new DataModels.ReboundModel() { id =

Guid.NewGuid() });

 }

}

As you have seen in Figure 7-2, we only have one component for

team data and we have two teams. Therefore, we need to identify each

component, and we do that by passing an integer as a parameter. We

also pass the game id as parameter, where the id will be generated in

Chapter 7 Practice Tasks for Server-side

149

Main.razor. Going further with the variables, you can notice four lists

created, each with their own type of object. Also, you can see that we

only have one list for score, even though a score has three types. The

types of score are declared as value in the record. To display the current

results, for the most part, we simply bind Count property of the Lists

with the exception of score. For the score, we are displaying total;

therefore, we need to calculate that. To make it simple, we just run a loop

in the page, which gets re-run every time the count property changes.

Finally, we have a few methods that will simply add new item on click.

Listing 7-14.  Index page

@page "/"

<div style="width:50%;float:left;">

 �<TeamComponenent team="1" gameid="@gameid">

</TeamComponenent>

</div>

<div style="width:50%;float:left;">

 �<TeamComponenent team="2" gameid="@gameid" >

</TeamComponenent>

</div>

@code {

Guid gameid;

protected override Task OnInitializedAsync() {

 gameid = Guid.NewGuid();

 return base.OnInitializedAsync();

}

}

Chapter 7 Practice Tasks for Server-side

150

For our Main page, we have a default route declared, so it works like

your generic Index.razor, except in this case, we have Main.razor. We also

have our gameid variable declared, which is set on initialization, although

you could simply set it on declaration. We also have two div elements, in

which our team components are set. And as planned, we pass integers for

each team; with that, we have gameid as well.

Listing 7-15.  services

using System;

using System.Collections.Generic;

using System.Threading.Tasks;

namespace WebApplication1.Data

{

 public class SaveService

 {

 �public async Task SaveProgress(Guid gameid,

int team,params object[] datatosave)

 {

 }

 �public async Task SaveProgress_Score(Guid gameid,

int team, List<DataModels.PointScoredModel> scores)

 {

 }

 �public async Task SaveProgress_Fouls(Guid gameid,

int team, List<DataModels.FoulModel> fouls)

 {

 }

Chapter 7 Practice Tasks for Server-side

151

 �public async Task SaveProgress_Rebounds(Guid gameid,

int team, List<DataModels.ReboundModel> rebounds)

 {

 }

 �public async Task SaveProgress_Blocks(Guid gameid,

int team, List<DataModels.BlockModel> blocks)

 {

 }

 }

}

For the saving of records (Listing 7-15), we can elect to have a couple

of options. If, say, you decide to include quarters and timer in general, you

will probably want to save the whole thing after the end of some period

of time. But if you want to be really safe, you will save on every action;

therefore, you will need a method like SaveProgress_Blocks.

�Summary
As you can see, server-side Blazor is really convenient, but it is important

not to forget that it uses lots of server resources. With that in mind, it is best

used for tasks where requirement is for data to reach server frequently.

Chapter 7 Practice Tasks for Server-side

153© Taurius Litvinavicius 2019
T. Litvinavicius, Exploring Blazor, https://doi.org/10.1007/978-1-4842-5446-2_8

CHAPTER 8

Practice Tasks
for Client-side
We have already learned a lot from this book, but to truly learn, you have to

practice. In this chapter, we will have a couple of projects for you to build.

You will find in this chapter

•	 Description for the first task

•	 Solution for the first task

•	 Description for the second task

•	 Solution for the second task

�Task 1
Your first task will provide with several simple exercises to practice general

syntax of Blazor, as well as a more complex exercise where you will need to

use components and local storage.

�Description
Create Blazor client-side application that would allow you to make

calculations according to the instructions provided.

154

�Age Calculator

Age calculator simply allows to enter two dates and return the difference in

years.

�Cylinder Surface Area

Use the following formula:

A = 2πrh + 2πr^2

where

A = area

r = radius

h = height

Allow to calculate all variables from the rest of them.

�Rectangular Area

Use the following formula:

A = a * b

where

A = area

a = side a

b = side b

Allow to calculate all variables from the rest of them.

Allow the calculations to be saved locally for later use.

Chapter 8 Practice Tasks for Client-side

155

�Trapezoid Area Calculator

Use the following formula:

A = (a + b) / 2 * h

where

A = area

a = base 1

b = base 2

h = height

Allow to calculate all variables from the rest of them.

�Area of Triangle Calculator

Use the following formula:

A = (h * b) / 2

where

A = area

h = height

b = base length

Allow to calculate all variables from the rest of them.

Chapter 8 Practice Tasks for Client-side

156

�Rectangular Area Calculator

Use the following formula:

A = a * b

where

A = area

a = side a

b = side b

This calculation is quite basic, but there is an additional task to go

along with it. You will need to locally save each calculation, if the user

wants them to be saved. Then, the calculation history will be displayed in

the page, and the user will be able to select one of them and insert variable

values from the record.

�Solution
Our solution will be separated in several parts, for each part of description

and as always; this is just one of many possible solutions rather than the

only one.

Chapter 8 Practice Tasks for Client-side

157

Every calculation has its own page (see Figure 8-1), except for the

rectangular where we also have a component for history.

Figure 8-1.  Project structure for the solution

Chapter 8 Practice Tasks for Client-side

158

�Age Calculator Solution

Let's look into the solution to age calculator in this section.

Listing 8-1.  Age calculator page

@page "/agecalculator"

<p>Birthdate: <input @onchange="@((args) => { birthdate = Convert.

ToDateTime((string)args.Value); Calculate(); })" type="date"/></p>

<p>To: <input @bind="@To" type="date"/></p>

<p><button @onclick="@InsertToday">Insert today</button></p>

<p>Age: @age</p>

@code {

 DateTime birthdate = new DateTime(1965,12,15);

 DateTime To = DateTime.Now;

 double age;

 void InsertToday()

 {

 To = DateTime.Now;

 }

 void Calculate()

 {

 age = birthdate.Subtract(To).TotalDays / 365;

 }

}

As you can see, the age calculator is quite straightforward (see

Listing 8-1); we simply have two variables of type datetime, and we bind

them with appropriate input fields. The more interesting part of this is

how we execute the Calculate method. The task does not have any specific

Chapter 8 Practice Tasks for Client-side

159

requirements, but you can either do a simple button and execute it on

click/tap or do something more exciting like we have here. On change of

the value, we assign the new value to the variable, and with that, we also

execute calculations. This is a good quick way to handle more than one

operation in a single event.

�Cylinder Surface Area Calculator

Let’s look into calculating the surface area of cylinder in this section.

Listing 8-2.  Cylinder surface area calculator page

@page "/cylindersurfaceareacalculator"

<h3>Cylinder Surface Area Calculator</h3>

<p><input class="inputstyle" @bind="@A" placeholder="A"/> =

2π * <input @bind="@r" class="inputstyle" placeholder="r"> ∗
<input @bind="@h" class="inputstyle" placeholder="h">

 �+ 2π * <input @bind="@r" class="inputstyle"
placeholder="r" />²</p>

<p>A = 2πrh + 2πr²</p>
<p>A - area <button @onclick="@Calculate_A">calculate

A</button></p>

<p>r - radius <button @onclick="@Calculate_r">calculate

r</button></p>

<p>π - @Math.PI</p>
<p>h - height <button @onclick="@Calculate_h">calculate

h</button></p>

@code {

 double r = 0;

 double h = 0;

 double A = 0;

Chapter 8 Practice Tasks for Client-side

160

 void Calculate_A()

 {

 A = 2 * Math.PI * r * h + 2 * Math.PI * Math.Pow(h,2);

 }

 void Calculate_r()

 {

 �r = 0.5 * Math.Sqrt(Math.Pow(h, 2) + 2 * (A / Math.

PI)) - (h / 2);

 }

 void Calculate_h()

 {

 h = (A / (2 * Math.PI * r)) - r;

 }

}

For the cylinder area calculator (Listing 8-2), we mostly have some

basic calculations being made. The trick in this task is to put things in

proper places and not make a mess of things, such as having the same

formula for two different outputs. First, we display our formula in basic text

format, and then we also have our formula with input fields in it. For each

variable, we have different methods that calculated a value, and for each of

them, we have different buttons that execute those methods.

�Trapezoid area calculator

Let’s look into calculating the area of trapezoid in this section.

Listing 8-3.  Trapezoid area calculator page

@page "/trapezoidareacalculator"

<p>@A = (<input @bind="@a" class="inputstyle"

placeholder="a"/> +

Chapter 8 Practice Tasks for Client-side

161

 �<input @bind="@b" class="inputstyle" placeholder="b">)

/ 2 * <input @bind="@h" class="inputstyle"

placeholder="h"></p>

<p>A = (a + b) / 2 * h</p>

<p>A - area</p>

<p>a - base 1</p>

<p>b - base 2</p>

<p>h - height</p>

<p><button @onclick="@Calculate"></button></p>

@code {

 double A;

 double a;

 double b;

 double h;

 void Calculate()

 {

 A = (a + b) / 2 * h;

 }

}

Trapezoid calculator is very similar to the previous one (Listing 8-2).

Again, the difficulty is not in finding something new, but rather in properly

assigning all the variables where they fit (Listing 8-3).

Chapter 8 Practice Tasks for Client-side

162

�Triangle Area Calculator

Let's look into calculating the area of triangle in this section.

Listing 8-4.  Triangle area calculator page

@page "/triangleareacalculator"

 <p>

 �<input class="inputstyle" @bind="@A" placeholder="A"> =

 �(<input class="inputstyle" @bind="@h" placeholder="h"> *

<input class="inputstyle" @bind="@b" placeholder="b">) / 2

 </p>

<p>A = (h ∗ b) / 2</p>
<p>A - area <button @onclick="@Calculate_A">Calculate

</button></p>

<p>h - height <button @onclick="@Calculate_h">Calculate

</button></p>

<p>b - base length <button @onclick="@Calculate_b">Calculate

</button></p>

@code {

 double A;

 double h;

 double b;

 void Calculate_A()

 {

 A = (h * b) / 2;

 }

 void Calculate_h()

 {

 h = A * 2 / b;

 }

Chapter 8 Practice Tasks for Client-side

163

 void Calculate_b()

 {

 b = A * 2 / h;

 }

}

Our triangle calculation (Listing 8-4) is once again quite basic, and this

is just one way to do it. You can, of course, do it on different events, or you

may want to just display the output in a way where you would not have

interactive formula.

�Rectangle Area Calculator

Let's look into calculating the area of rectangle in this section.

Listing 8-5.  Calculation history item component

<p>A: @item.A</p>

<p>side a: @item.a</p>

<p>side b: @item.b</p>

<p><button @onclick="@(async () => await OnSelect.

InvokeAsync(item.id))">Pick</button></p>

@code {

 [Parameter]

 �public BlazorApp1.RectangularAreaHistoryItemModel item {

get; set; }

 [Parameter]

 public EventCallback<string> OnSelect { get; set; }

}

Chapter 8 Practice Tasks for Client-side

164

Listing 8-6.  Calculator page

@page "/rectangularareacalculator"

@inject IJSRuntime js

@using System.Runtime.Serialization.Formatters.Binary;

<p>

 �<input @bind="@currentcalculation.A" class="inputstyle"

placeholder="A"> =

 �<input @bind="@currentcalculation.a" class="inputstyle"

placeholder="a">

 *
 �<input @bind="@currentcalculation.b" class="inputstyle"

placeholder="b">

</p>

<p>A = a * b</p>

<p>A - area <button @onclick="@Calculate_A">Calculate

</button></p>

<p>a - side a <button @onclick="@Calculate_a">Calculate

</button></p>

<p>b - side b <button @onclick="@Calculate_b">Calculate

</button></p>

<p>Save calculations <input type="checkbox" @bind=

"@savecalculation" /></p>

<p>History: </p>

@foreach (var item in calculationhistory)

{

 <RectangularAreaHistoryItemComponent @key=

"@item.id" item="@item" OnSelect="Selected">

</RectangularAreaHistoryItemComponent>

}

Chapter 8 Practice Tasks for Client-side

165

@code {

 �var calculationhistory = new List<RectangularAreaHistory

ItemModel>();

 bool savecalculation;

 �var currentcalculation = new

RectangularAreaHistoryItemModel();

 void Calculate_A()

 {

 �currentcalculation.A = currentcalculation.a ∗
currentcalculation.b;

 if (savecalculation)

 {

 SaveCalculation();

 }

 }

 void Calculate_a()

 {

 �currentcalculation.a = currentcalculation.A /

currentcalculation.b;

 if (savecalculation)

 {

 SaveCalculation();

 }

 }

 void Calculate_b()

 {

 �currentcalculation.b = currentcalculation.A /

currentcalculation.a;

Chapter 8 Practice Tasks for Client-side

166

 if (savecalculation)

 {

 SaveCalculation();

 }

 }

 async void SaveCalculation()

 {

 var formatter = new BinaryFormatter();

 var tempstream = new System.IO.MemoryStream();

 currentcalculation.id = Guid.NewGuid().ToString();

 calculationhistory.Add(currentcalculation);

 formatter.Serialize(tempstream, calculationhistory);

 �string base64 = Convert.ToBase64String(tempstream.

ToArray());

 �await js.InvokeAsync<object>("localStorage.removeItem",

"rectareacalculationhistory");

 �await js.InvokeAsync<object>("localStorage.setItem",

"rectareacalculationhistory", base64);

 }

 protected override async Task OnInitializedAsync()

 {

 �string base64 = await js.InvokeAsync<string>("local

Storage.getItem", "rectareacalculationhistory");

 var formatter = new BinaryFormatter();

 �var tempstream = new System.IO.MemoryStream(Convert.

FromBase64String(base64));

 �calculationhistory = (List<RectangularAreaHistoryItem

Model>)formatter.Deserialize(tempstream);

 }

Chapter 8 Practice Tasks for Client-side

167

 void Selected(string id)

 {

 �currentcalculation = calculationhistory.Find(x =>

x.id == id);

 }

}

The rectangular feature is a bit more complex than the others;

besides the page, we will also need a component for history output.

The component (Listing 8-5) does not do too much; it simply takes and

displays the provided data and contains a callback variable, which will

be used for removing the element. In the page (Listing 8-6), we first need

to look at the method and insert the serialized list into local storage as

base64. If our checkbox is checked, we execute SaveCalculation method

on every calculation, if not – we do not save it, the way it gets save we

have covered in Chapter 6; the only difference is that we want to clear the

key/value pair without accessing JavaScript; therefore, we simply have

to remove it first and create a new one. The reading part is also almost

identical to the code we covered in Chapter 6; we only read the string and

deserialize it to the list of our history items.

Listing 8-7.  Navigation page

<div class="top-row pl-4 navbar navbar-dark">

 BlazorApp1

 <button class="navbar-toggler" @onclick="ToggleNavMenu">

 </button>

</div>

<div class="@NavMenuCssClass" @onclick="ToggleNavMenu">

 <ul class="nav flex-column">

 <li class="nav-item px-3">

Chapter 8 Practice Tasks for Client-side

168

 �<NavLink class="nav-link" href=""

Match="NavLinkMatch.All">

 �

 Home

 </NavLink>

 <li class="nav-item px-3">

 �<NavLink class="nav-link" href="cylindersurfacearea

calculator">

 Cylinder surface area calculator

 </NavLink>

 <li class="nav-item px-3">

 �<NavLink class="nav-link"

href="triangleareacalculator">

 triangle area calculator

 </NavLink>

 <li class="nav-item px-3">

 <NavLink class="nav-link" href="agecalculator">

 age calculator

 </NavLink>

 <li class="nav-item px-3">

 �<NavLink class="nav-link" href="rectangularareacal

culator">

 Rectangle area calculator

 </NavLink>

Chapter 8 Practice Tasks for Client-side

169

 <li class="nav-item px-3">

 �<NavLink class="nav-link" href="trapezoidarea

calculator">

 trapezoid area calculator

 </NavLink>

</div>

@code {

 bool collapseNavMenu = true;

 string NavMenuCssClass => collapseNavMenu ? "collapse" : null;

 void ToggleNavMenu()

 {

 collapseNavMenu = !collapseNavMenu;

 }

}

Finally, since it suits us well, for the navigation we do not clear most

of the defaults (see Listing 8-7); we just set up our navlinks according to

the pages that we have. In real-world projects, it would be a good idea to

change the designs if you take on this approach.

�Task 2
Build an invoice generator. Invoice is basically a written request from one

business to another for a payment. It states company details, items, values,

and total values. Our version will be simplified.

Chapter 8 Practice Tasks for Client-side

170

�Description
Since our invoice is simplified, we will only have a couple of company

details, and the biggest part of the development will be sales item. The user

should be able to add as many items as they want, and the total of each

time should be added to the total of the invoice.

Inputs

•	 Id

•	 Description

•	 Total (generated from items)

Sales items

•	 Description

•	 Price

•	 Tax

•	 Total

In the sales items, you also need to provide the total for each item.

Use component for sales item. Do note that you are not required to do any

actual PDF, PNG, or other visual outputs of invoice.

�Solution
Just like the previous task, this is not the only solution possible, but your

project should have been very similar.

Chapter 8 Practice Tasks for Client-side

171

Listing 8-8.  Main layout

@inherits LayoutComponentBase

 <div style="width:100%;float:left;">

 @Body

 </div>

Since we only need one page for this application, we will not have too

many files, but rather we will work on the index page and create a single

component for sales item, which we will explore later. The layout is also

very basic (Listing 8-8 and Figure 8-2); we have removed all the default

stuff and left just a skeleton layout.

Figure 8-2.  Project structure for the solution

Chapter 8 Practice Tasks for Client-side

172

Listing 8-9.  Invoice model

using System.Collections.Generic;

namespace WebApplication1.DataModels

{

 public class InvoiceModel

 {

 public string id { get; set; }

 public string description { get; set; }

 public double total { get; set; }

 public List<SalesItemModel> salesitems

 {

 get; set;

 }

}

}

Listing 8-10.  Sales item model

namespace WebApplication1.DataModels

{

 public class SalesItemModel

 {

 public string itemid { get; set; }

 public string description { get; set; }

 public double price { get; set; } = 0;

 public double tax { get; set; } = 0;

 public double total { get; set; } = 0;

 }

}

Chapter 8 Practice Tasks for Client-side

173

For our invoice, we need to create a couple of data models (see

Listings 8-9, 8-10). While the task does not require us to generate the files, we

still want to prepare for that. The invoice simply contains an id, description,

total, and then the sales items added to it. The sales item is quite basic as

well; we have item id, description, price, tax, and total. Everything here is

very generic, and the interesting part will begin in the index page.

Listing 8-11.  Main page

@page "/"

@inject IJSRuntime js

 <div style="float:left;width:100%;">

 <p>Total: @total</p>

 <p>Total tax: @totaltax</p>

 <p>Description</p>

 �<p><textarea @bind="@currentinvoice.description">

</textarea></p>

 <p>Sales items</p>

 <p><button @onclick="@AddNewItem">Add</button></p>

 </div>

@foreach (var item in currentinvoice.salesitems)

{

 <WebApplication1.Pages.Components.SalesItem

OnDescription Change="ChangeForItemDescription" OnValueChange=

"ChangeForItemValue" OnTotalChange="ChangeForItemTotal"

OnTaxChange="ChangeForItemTax" OnRemove="RemoveItem" @key=

"item.itemid" _itemid="@item.itemid"></WebApplication1.

Pages.Components.SalesItem>

}

@code {

Chapter 8 Practice Tasks for Client-side

174

 �DataModels.InvoiceModel currentinvoice = new DataModels.

InvoiceModel() { id = Guid.NewGuid().ToString(),

salesitems = new List<DataModels.SalesItemModel>() };

 double total = 0;

 double totaltax = 0;

 void AddNewItem()

 {

 �currentinvoice.salesitems.Add(new DataModels.

SalesItemModel() { itemid = Guid.NewGuid().ToString() });

 }

 void RemoveItem(string id)

 {

 �currentinvoice.salesitems.Remove(currentinvoice.

salesitems.Where(x => x.itemid == id).ToArray()[0]);

 }

 �void ChangeForItemDescription(KeyValuePair<string,string>

args)

 {

 �currentinvoice.salesitems.Find(x => x.itemid == args.

Key).description = args.Value;

 }

 void ChangeForItemValue(KeyValuePair<string,double> args)

 {

 �currentinvoice.salesitems.Find(x => x.itemid == args.

Key).price = args.Value;

 }

Chapter 8 Practice Tasks for Client-side

175

 void ChangeForItemTax(KeyValuePair<string,double> args)

 {

 �currentinvoice.salesitems.Find(x => x.itemid == args.

Key).tax = args.Value;

 totaltax = 0;

 foreach (var item in currentinvoice.salesitems)

 {

 totaltax += item.tax;

 }

 }

 void ChangeForItemTotal(KeyValuePair<string,double> args)

 {

 �currentinvoice.salesitems.Find(x => x.itemid == args.

Key).total = args.Value;

 total = 0;

 foreach (var item in currentinvoice.salesitems)

 {

 total += item.total;

 }

 }

}

Listing 8-12.  Sales item component

<div style="float:left;width:100%;">

 �<p><button @onclick="@(async () => await OnRemove.

InvokeAsync(_itemid))">Remove</button></p>

 <p>description:</p>

 �<p><input @onchange="@(async (args) => await

OnDescriptionChange.InvokeAsync(new KeyValuePair<string,

string>(_itemid, (string)args.Value)))"></p>

Chapter 8 Practice Tasks for Client-side

176

 <p>value:</p>

 �<p><input @onchange="@((args) => ReeveluateAfterValue

Change(Convert.ToDouble(args.Value)))" ></p>

 <p>tax:</p>

 �<p><input @onchange="@((args) => ReeveluateAfter

TaxChange(Convert.ToDouble(args.Value)))" ></p>

 <p>total:</p>

 <p>@total</p>

 <p>@_itemid</p>

</div>

@code {

 [Parameter]

 public string _itemid { get; set; }

 [Parameter]

 public EventCallback<string> OnRemove { get; set; }

 [Parameter]

 �public EventCallback<KeyValuePair<string,string>>

OnDescriptionChange { get; set; }

 [Parameter]

 �public EventCallback<KeyValuePair<string,double>>

OnValueChange { get; set; }

 [Parameter]

 �public EventCallback<KeyValuePair<string,double>>

OnTaxChange { get; set; }

 [Parameter]

 �public EventCallback<KeyValuePair<string,double>>

OnTotalChange { get; set; }

Chapter 8 Practice Tasks for Client-side

177

 double total;

 double value;

 double tax;

 async void ReeveluateAfterValueChange(double newvalue)

 {

 value = newvalue;

 �await OnValueChange.InvokeAsync(new

KeyValuePair<string, double>(_itemid,value));

 total = value + (tax / 100) * value;

 �await OnTotalChange.InvokeAsync(new

KeyValuePair<string, double>(_itemid, total));

 }

 async void ReeveluateAfterTaxChange(double newvalue)

 {

 tax = newvalue;

 �await OnValueChange.InvokeAsync(new

KeyValuePair<string, double>(_itemid,value));

 total = value + (tax / 100) * value;

 �await OnTotalChange.InvokeAsync(new

KeyValuePair<string, double>(_itemid, total));

 }

}

While the invoice page and items component may come across as

complex, when you look closely, they only use the most basic features

of Blazor. The most difficult part here is dealing with components and

attempting calculation on changes. Component (Listing 8-12) simply takes

an id for it, because when it gets generated, all the values are empty. The

most important part here are the callbacks; as you can see, all the input

fields have one and they all act differently. The description is the simplest

one, as it only returns the id and the new description value. Tax and value

Chapter 8 Practice Tasks for Client-side

178

are more complex; we first need to establish methods, which will calculate

the values in the component and display them in the component directly.

Then, these methods invoke our callbacks; to get further, we need to switch

to the page. Our page (Listing 8-11) handles the callbacks differently,

but for the most part, the idea is to assign the values to the list of items,

because that is what would be generated to some kind of visual format.

�Summary
Both of these tasks not only give you an opportunity to practice your skills

but also show you how client-side Blazor can make your business more

efficient. For any of these tasks, there is absolutely no need to go to server-

side, which saves you a lot of money. With that, the use of components

simplifies development and keeps your code cleaner.

Chapter 8 Practice Tasks for Client-side

179© Taurius Litvinavicius 2019
T. Litvinavicius, Exploring Blazor, https://doi.org/10.1007/978-1-4842-5446-2_9

CHAPTER 9

Practice Task
for Blazor Hosted
In this chapter, you will continue practicing what you have learned

previously, but there will only be one project to complete. At this point, you

should be comfortable with the client-side development, but a little more

practice will not hurt.

This chapter will cover

•	 Introduction to the task

•	 Resources for the task

•	 Solution for the task

�Task 1
For your Blazor hosted task, you will need to create a program that deals

with statistics of poker players. During this task, you will notice how easy

it is to use the shared data model feature, as well as how useful it is to have

client-side file generation capability.

180

�Description
You will need to first display a list of players, for which you can simply use

a button containing the name of the player. On the selection (click) of the

player, their statistics will be fetched and displayed. The statistics data for

each player will be cached, meaning that if the player is selected again,

after another one has been selected, the data will not be retrieved from the

server unless the user refreshes it. The next part of the task is for client-side

related; the program should allow to export a JSON file of selected player

statistics or the statistics for all cached players.

Player statistics output

•	 Total tournaments

•	 Total winnings

•	 Tournaments in the money

•	 Date started

•	 Last updated (either retrieved or refreshed)

�Resources
You will be provided with a class that contains a list of users and two

methods that will retrieve both the list and statistics for each player.

Listing 9-1.  Players.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Threading.Tasks;

namespace WebApplication1.Server.DataLogic

{

Chapter 9 Practice Task for Blazor Hosted

181

 public class Players

 {

 �static List<PlayerData> PlayersList = new

List<PlayerData>() {

 new PlayerData

 {

 id = 1,

 name = "John dow",

 totaltournaments = 1100,

 totalwinnings = 115000,

 totalinthemoney = 250,

 datestarted = DateTime.Parse("08/20/2005")

 },

 new PlayerData

 {

 id = 2,

 name = "John mark",

 totaltournaments = 1500,

 totalwinnings = 15005,

 totalinthemoney = 15,

 datestarted = DateTime.Parse("02/25/2009")

 },

 new PlayerData

 {

 id = 3,

 name = "John dean",

 totaltournaments = 1300,

 totalwinnings = 134000,

 totalinthemoney = 468,

 datestarted = DateTime.Parse("12/25/2017")

 },

Chapter 9 Practice Task for Blazor Hosted

182

 new PlayerData

 {

 id = 4,

 name = "mark lee",

 totaltournaments = 150,

 totalwinnings = 5300,

 totalinthemoney = 7,

 datestarted = DateTime.Parse("06/25/2008")

 },

 new PlayerData

 {

 id = 5,

 name = "t young",

 totaltournaments = 101,

 totalwinnings = 18000,

 totalinthemoney = 19,

 datestarted = DateTime.Parse("08/25/2013")

 },

 new PlayerData

 {

 id = 6,

 name = "richar right",

 totaltournaments = 36,

 totalwinnings = 1300000,

 totalinthemoney = 10,

 datestarted = DateTime.Parse("08/25/1995")

 }

 };

 class PlayerData

 {

 public int id { get; set; }

 public string name { get; set; }

Chapter 9 Practice Task for Blazor Hosted

183

 public int totaltournaments { get; set; }

 public double totalwinnings { get; set; }

 public double totalinthemoney { get; set; }

 public DateTime datestarted { get; set; }

 }

 �public static Task<List<Shared.PlayerListItem>>

RetrievePlayerList()

 {

 �List<Shared.PlayerListItem> templist = new

List<Shared.PlayerListItem>();

 foreach (var item in PlayersList)

 {

 �templist.Add(new Shared.PlayerListItem() { id =

item.id, name = item.name });

 }

 return Task.FromResult(templist);

 }

 �public static Task<Shared.PlayerStatisticsItem>

RetrievePlayerStatistics(int id)

 {

 �var selectedplayer = PlayersList.Where(cl => cl.id

== id).ElementAt(0);

 �return Task.FromResult(new Shared.

PlayerStatisticsItem() {

 playerid = id,

 �totaltournaments = selectedplayer.

totaltournaments,

 �totalinthemoney = selectedplayer.

totalinthemoney,

 totalwinnings = selectedplayer.totalwinnings,

Chapter 9 Practice Task for Blazor Hosted

184

 datestarted = selectedplayer.datestarted,

 lastrefresh = DateTime.UtcNow

 });

 }

 }

}

First, we have our PlayerData model (see Listing 9-1), which will be

our main model in this fake database. It will also create a static list, with

some items for you to work with. You will only need to deal with the

following methods:

•	 RetrievePlayerList – Fetches the list of players, but

only takes and gives an id and a name for each player

•	 RetrievePlayerStatistics – Fetches the full details

for a single player

�Solution
Now that you have your task completed, we can take a look at a

solution. Do mind that as long as it is working, it is probably right, but

there are many ways to do it, and some ways might be more efficient

than others.

Figure 9-1.  Shared library

Chapter 9 Practice Task for Blazor Hosted

185

Listing 9-2.  Player list item model

namespace WebApplication1.Shared

{

 public class PlayerListItem

 {

 public string name { get; set; }

 public int id { get; set; }

 }

}

Listing 9-3.  Player statistics item model

using System;

namespace WebApplication1.Shared

{

 public class PlayerStatisticsItem

 {

 public int playerid { get; set; }

 public int totaltournaments { get; set; }

 public double totalwinnings { get; set; }

 public double totalinthemoney { get; set; }

 public DateTime datestarted { get; set; }

 public DateTime lastrefresh { get; set; }

 }

}

First, we should start from the data models (see Figure 9-1) and then

move to the back end. For this application, we will only need two models –

one for listing (Listing 9-2) and the other one for statistics (Listing 9-3) of

the user. As you can see, these do not contain all the user data, only what

you need to display. Now that we have all that, we can move on to the

server part (Figure 9-2).

Chapter 9 Practice Task for Blazor Hosted

186

Listing 9-4.  Players controller

using System.Collections.Generic;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Mvc;

namespace WebApplication1.Server.Controllers

{

 public class PlayersController : Controller

 {

 [Route("/retrieveplayerslist")]

 [HttpGet]

 �public async Task<List<Shared.

PlayerListItem>> GetPlayers()

 {

 �return await DataLogic.Players.

RetrievePlayerList();

 }

 [Route("/retrieveplayerstats")]

 [HttpGet]

 �public async Task<Shared.PlayerStatisticsItem>

GetPlayerStats(int id)

Figure 9-2.  API project in the solution

Chapter 9 Practice Task for Blazor Hosted

187

 {

 �return await DataLogic.Players.

RetrievePlayerStatistics(id);

 }

 }

}

First, we need to create a Player.cs class, where we simply insert contents

provided in the resources. The file is conveniently placed in the DataLogic

folder, which in this structure would only contain classes that have methods

for data retrieval, insertion, or other database-related procedures. After we

have that, we can move on to the controller (Listing 9-4) where we have

two routes – for list and statistics. As you can see, the action methods only

execute the static methods from data logic; this helps to keep the controller

completely clean.

Figure 9-3.  Client project in the solution

Chapter 9 Practice Task for Blazor Hosted

188

Listing 9-5.  Main page

@page "/"

@using datamodels = WebApplication1.Shared;

@using Newtonsoft.Json;

@inject HttpClient http

@inject IJSRuntime jsruntime

Everything related to client-side (Figure 9-3) will be done in one single

page (Index.razor in this case). However, you may have chosen to use

components which would have made the page look cleaner, although it

would have taken more time to set up. First, we need to establish some

general declarations (Listing 9-5), starting with the page route. With the

route, we need to declare a using statement for the shared folder; since

we already have a namespace “Shared” in the client part, we elect to use a

name for the namespace WebApplication1.Shared – “datamodels”. We will

be using Newtonsoft for our JSON exports; therefore, it is convenient to

declare Newtonsoft.Json namespace. Finally, we have two injections – one

for the http client which will be used in API calls and the other IJSRuntime

which we will use to save the file.

Listing 9-6.  Player statistics component

 <div>

 �<p><button @onclick="@(async () => await

FetchPlayers())">Fetch players</button></p>

 @if (listofplayers.Count > 0)

 {

 foreach (var item in listofplayers)

 {

 �<p><button @onclick="@(async () => await

ShowPlayerStatistics(item.id))">@item.name

</button></p>

Chapter 9 Practice Task for Blazor Hosted

189

 }

 }

 else

 {

 <p>No players available</p>

 }

 </div>

 <div>

 @if (CurrentPlayerDisplayed != null)

 {

 �<p>total tournaments played:

@CurrentPlayerDisplayed.totaltournaments</p>

 �<p>total winnings: @CurrentPlayerDisplayed.

totalwinnings</p>

 �<p>total in the money: @CurrentPlayerDisplayed.

totalinthemoney</p>

 �<p>date started: @CurrentPlayerDisplayed.

datestarted.ToShortDateString()</p>

 �<p>Last refreshed: @(Math.

Ceiling(CurrentPlayerDisplayed.lastrefresh.

Subtract(DateTime.UtcNow).TotalMinutes)) minutes

ago</p>

 �<p><button @onclick="@(async () => await Ref

reshPlayerStatistics(CurrentPlayerDisplayed.

playerid))">Refresh</button></p>

 �<p><button @onclick="@(async () => await

ExportCurrentPlayer())">Export player</button></p>

 }

Chapter 9 Practice Task for Blazor Hosted

190

 else

 {

 <p >Select a player for display</p>

 }

 </div>

<div>

 �<p><button @onclick="@(async () => await

ExportAllPlayers())" >Export all players</button></p>

</div>

@code {

 �List<datamodels.PlayerListItem> listofplayers = new

List<datamodels.PlayerListItem>();

 �Dictionary<int, WebApplication1.Shared.

PlayerStatisticsItem> PlayerStatisticsCache =

new Dictionary<int, WebApplication1.Shared.

PlayerStatisticsItem>();

 �datamodels.PlayerStatisticsItem CurrentPlayerDisplayed =

null;

 async Task FetchPlayers()

 {

 �listofplayers = await http.

GetJsonAsync<List<datamodels.PlayerListItem>>

("/retrieveplayerslist");

 }

 async Task ShowPlayerStatistics(int id)

 {

 �bool iscached = PlayerStatisticsCache.TryGetValue(id,

out CurrentPlayerDisplayed);

Chapter 9 Practice Task for Blazor Hosted

191

 if (!iscached)

 {

 �CurrentPlayerDisplayed = await http.

GetJsonAsync<datamodels.PlayerStatisticsItem>

("/retrieveplayerstats?id="+id);

 �PlayerStatisticsCache.Add(id,

CurrentPlayerDisplayed);

 }

 }

 async Task RefreshPlayerStatistics(int id)

 {

 �CurrentPlayerDisplayed = await http.

GetJsonAsync<datamodels.PlayerStatisticsItem>

("/retrieveplayerstats?id="+id);

 PlayerStatisticsCache[id] = CurrentPlayerDisplayed;

 }

 async Task ExportCurrentPlayer()

 {

 �string json = JsonConvert.SerializeObject(CurrentPlayer

Displayed);

 �string base64 = Convert.ToBase64String(System.Text.

Encoding.UTF8.GetBytes(json));

 �await jsruntime.InvokeAsync<object>("downloadfile",

"PlayerStats_" + DateTime.UtcNow.ToFileTimeUtc().

ToString() + ".json",base64);

 }

Chapter 9 Practice Task for Blazor Hosted

192

 async Task ExportAllPlayers()

 {

 �string json = JsonConvert.SerializeObject(Player

StatisticsCache);

 �string base64 = Convert.ToBase64String(System.Text.

Encoding.UTF8.GetBytes(json));

 �await jsruntime.InvokeAsync<object>("downloadfile",

"AllPlayers_" + DateTime.UtcNow.ToFileTimeUtc().

ToString() + ".json",base64);

 }

}

We start the Index.razor (Listing 9-6) page by declaring two variables

which will be used to display outputs. The first one is the list listofplayers;

this will hold the list objects where we find name and id. The method

FetchPlayers will retrieve players from the server and assign them to the

list. After that, the list is displayed it in the first div element – here we first

check if the list contains any items; if not, we simply tell the user that the

system has no players to display. On the other hand, if the list is filled,

we will go through each item and assign the values to the button text

(name), and in the onclick for the button, we will pass a parameter (id) to

the method ShowPlayerStatistics. This method will retrieve the statistics

data for that specific user from the server, but before that, we will try to

check our dictionary PlayerStatisticsCache to see if the player statistics

have already been cached; if they have, we will simply assign that to the

CurrentPlayerDisplayed variable, and if not, we will retrieve the data and

assign it then. Once it is assigned, the “if” statement is re-evaluated and

the variables in the object are updated in all the necessary places.

Chapter 9 Practice Task for Blazor Hosted

193

Listing 9-7.  File download script (javascript)

function downloadfile(name, bt64) {

 var downloadlink = document.createElement('a');

 downloadlink.download = name;

 �downloadlink.href = "data:application/octet-stream;base64,"

+ bt64;

 document.body.appendChild(downloadlink);

 downloadlink.click();

 document.body.removeChild(downloadlink);

 }

For the exporting part, we will need to use a bit of JavaScript, just

to establish one function (Listing 9-7) which will “download” the

file from the client-side. Then, to export a single player, we will use

ExportCurrentPlayer, which serializes the CurrentPlayerDisplayed variable

to a json string, then converts a string to a byte array, and finally converts

that to Base64 string. Once we have a Base64 string, we can pass it to the

JavaScript alongside the name for the file. The exportation of all players

would use the method ExportAllPlayers, and it would work exactly the

same way, except it would use PlayerStatisticsCache variable.

�Summary
As you probably have noticed throughout this project, merging API and

client-side solutions is a lot more efficient, mainly because of the shared

models’ libraries. The testing is also a bit easier, as you do not need to

launch two projects at the same time. With all the knowledge that you

acquired and the practice that you have done, you should be able to

develop real-world projects now.

Chapter 9 Practice Task for Blazor Hosted

195© Taurius Litvinavicius 2019
T. Litvinavicius, Exploring Blazor, https://doi.org/10.1007/978-1-4842-5446-2

Index

A
AddElement method, 57
AddHobby method, 62
API calls

basic routes, 80
buyer controller, 90, 91
buyer model, 87, 89
buyer page, 95, 96
components, 99, 100
HTTP client

manipulations, 84, 86
JSONfull way, 81–84
product controller, 91, 93
product model, 88, 89
purchase component, 110, 111
purchase controller, 94, 95
purchase model, 88, 89
shared library, 77, 78
static list variables, 89, 90
web api and shared library, 87
web api part, 78

B
Binding

element, 12
functions section

paragraph tag, 13

parameters, accept and
pass, 14, 15

<script> tag, 13
testparam, 15
two-way, 14

page events, 16, 17
Blazor, 1, 2

client hosted, 5, 6
client-side, 4, 5
save file, 130
server-side, 3, 4

Blazor hosted
clean up template, 73, 74

client-side project, 72
server-side project, 72, 73
shared library .net standard

project, 73
navigation

API part, 76
client-side part, 75
server part, 76
TestPage.razor, 77

structure
client-side project, 67, 68
server-side project, 68
shared library .net standard

project, 68
Startup.cs file, 69–71

https://doi.org/10.1007/978-1-4842-5446-2

196

Blazor hosted task
API project, 185, 186
client project, 187, 188
controller, 186, 187
data models, 185
declarations, 188
exportation, 193
Index.razor, 188, 189, 191, 192
Newtonsoft.Json

namespace, 188
player.cs, 180–184, 187
player statistics, 180
poker players, 179
shared library, 184

BuyerForPurchaseComponent.
razor, 104, 105, 107, 108

C
Client-side

clean up template
MainLayout.razor, 48
project template, 47, 48

components, 54
complex system, 54
Index.razor, 55, 56
preservation, 56–58
static variable, 55
TestChanged event, 55

index.html/Index.razor,
125, 127–129

navigation
advanced page, 51
basic page, 50

component creation, 59, 60
HobbyModel, 60
NavigationManager, 50
NavMenu component, 52, 53
pages, 50
parameter, 51, 52
preview page, 63, 64
project structure, 49, 58
query string, 64
Sign up page, 60–62

program and startup
AddComponent<App>, 46
App.razor file, 46
host builder, 44
index.html contents, 44, 45

template, 125
Client-side tasks

calculations
age calculator, 154
area of triangle calculator, 155
cylinder surface area, 154
rectangular area, 154, 156
Trapezoid area calculator, 155

invoice generator, 169
components, 175–177
data models, 172, 173
index page, 173
invoice page, 177
layout, 171
project structure, 171

solution
age calculator, 158
cylinder surface area, 159, 160
project structure, 157

INDEX

197

rectangle area, 163–167, 169
trapezoid area, 160, 161
triangle area, 162, 163

CreateHostBuilder, 44
CreateProductAsync

method, 138, 140
CreateProductPage.razor, 96–99
CreatePurchasePage.razor,

100–104, 107, 108

D, E
DeleteHobby method, 63
DeleteProductAsync

method, 138

F
FakeDatabase class, 138
FetchPlayers method, 192

G, H
GetAllProductsAsync

method, 138
GetJsonAsync method, 83, 84
GetTest1 method, 84, 86
GetTest2 method, 84, 86

I
Index.razor, 25, 55, 74, 125,

135, 192
InvokeAsync method, 116

J, K, L
JavaScript code, 129
JavaScript function

execution, 114, 115
project layout, 114
UI arguments, 117, 118
UI events, 116

JSinteractionsPage.razor, 115
JSinterop, 129

M
MainLayout.razor, 26, 48, 74, 135
Main.razor, 144, 145
MapDefaultControllerRoute, 71
MapFallbackToClientSideBlazor, 71

N
NavigateTo method, 50
Navigation project

contact page, 38, 39, 42
cpnservice, 38
home page, 34
InfoPage, 36, 37
injection of service, 41
register service, 40
testing, 34, 35
web site, 33

NavMenu.razor, 26, 135

O
OnInitializedAsync method, 84

Index

198

P, Q
Player.cs class, 187
PostJsonAsync method, 84
ProductForPurchasePage

Component.razor, 106–108
ProductModel.cs file, 136

R
Razor vs. Blazor, 7

comment syntax, 8
for loop, 11
functions section, 11
if statement, 10
sections, 9

RemoveElement method, 57
RenderComponentAsync

method, 28

S
SaveCalculation method, 167
SendAsync method, 86
Server-side navigation

components, 29, 30
HTML element, 26
MainLayout.razor, 26, 27
pages, 27–29
parameters, 30–32
project (see Navigation project)
Shared folder, 26

Server-side tasks
basketball game tracking, 143
count property, 149

data model, 138
links, 143
Main.razor, 144, 145, 150
models, 146
nav bar, 142
page creation, 139, 140
product display, 140, 141
product management

dashboard, 133, 134
resources, 134
saving of records, 150, 151
scores, 146
solution projects, 135
Startup.cs. file, 139
TeamComponent.razor, 144, 145

Server-side technology
injection

data folder, 23
Index.razor file, 25
Startup.cs, 25
TestService.cs file, 24

startup
AddRazorPages, 22
AddServerSideBlazor

method, 22
.NET Core, 19
Program.cs, 19, 20
Startup.cs, 20, 22

ShowPlayerStatistics
method, 192

Storage
BinaryFormatter, 124
location, 119
object to Base64, 122–124

INDEX

199

object to json, 122
template, 118, 119
text, 120, 121

T
TeamComponent.razor, 144, 145
TestChanged event, 55

U, V
UseBlazorDebugging, 71
UseClientSideBlazorFiles, 71

W, X, Y, Z
WebAssembly, 2, 5, 6

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Introduction
	What is Blazor?
	What is WebAssembly?
	Blazor Types
	Blazor Server-side
	Blazor Client-side
	Blazor Hosted

	Summary

	Chapter 2: Razor Syntax and Basics of Blazor
	Differences between Razor and Blazor
	Syntax
	Comments
	Sections

	Blazor Binds
	Bind to Element
	code
	Page Events

	Summary

	Chapter 3: Blazor server-side
	Default template overview
	Startup
	Injections

	Navigation
	Pages
	Components
	Parameters
	Finished example project

	Summary

	Chapter 4: Blazor Client-side
	Default Template Overview
	Program and Startup
	Clean Up the Template

	Navigation
	Components
	Using Key to Preserve Components
	Example

	Summary

	Chapter 5: Blazor hosted
	Default template overview
	General structure
	Clean up the template

	Navigation
	API calls
	JSONfull way
	HTTP client manipulations
	Example

	Summary

	Chapter 6: General Blazor
	Interacting with JavaScript
	Execute JavaScript Function
	UI Events
	UI Arguments

	Local Storage
	Where to Store?
	Store Text
	Store Other Types

	Pick and Save Files
	Pick File
	Save File

	Summary

	Chapter 7: Practice Tasks for Server-side
	Task 1
	Description
	Resources
	Solution

	Task 2
	Description
	Solution

	Summary

	Chapter 8: Practice Tasks for Client-side
	Task 1
	Description
	Age Calculator
	Cylinder Surface Area
	Rectangular Area
	Trapezoid Area Calculator
	Area of Triangle Calculator
	Rectangular Area Calculator

	Solution
	Age Calculator Solution
	Cylinder Surface Area Calculator
	Trapezoid area calculator
	Triangle Area Calculator
	Rectangle Area Calculator

	Task 2
	Description
	Solution

	Summary

	Chapter 9: Practice Task for Blazor Hosted
	Task 1
	Description
	Resources
	Solution

	Summary

	Index

